On asymptotics of the structure on conditional configuration graphs with bounded number of links

Yu. Pavlov ${ }^{1}$
${ }^{1}$ Karelian Research Centre RAS, Petrozavodsk, Russia
pavlov@krc.karelia.ru

We consider configuration graphs where vertex degrees are independent identically distributed random variables. Configuration random graphs are being a good implementation of the social, telecommunication networks and Internet topology [1]. Numerous of real networks suggest that the distribution of degree ξ of each vertex can be specified by the relation

$$
\begin{equation*}
p_{k}=\mathbf{P}\{\xi=k\}=\frac{h(k)}{k^{\tau}}, \quad k=1,2, \ldots, \quad \tau>1, \tag{1}
\end{equation*}
$$

where $h(x)>0$ is a slowly varying function. Let N be a number of vertices in the graph and random variables $\eta_{1}, \ldots, \eta_{N}$ are equal to the degrees of vertices with the numbers $1, \ldots, N$. We consider the subset of random graphs under the condition $\eta_{1}+\ldots+\eta_{N} \leq n$.

Denote by $\eta_{(N)}$ and μ_{r} the maximum vertex degree and the number of vertices with degree r respectively. Let $\tau>3$. We introduce the following notations:

$$
m=\mathbf{E} \xi=\sum_{k=1}^{\infty} \frac{h(k)}{k^{\tau-1}}, \quad \sigma^{2}=\mathbf{D} \xi=\sum_{k=1}^{\infty} \frac{h(k)}{k^{\tau-2}}-m^{2} .
$$

The next theorems are proved.
Theorem 1. Let $N, n \rightarrow \infty$ in such a way that

$$
\begin{equation*}
\frac{n-N m}{\sqrt{N}} \geq C>-\infty \tag{2}
\end{equation*}
$$

and $r=r(N, n)$ are chosen such that

$$
\frac{N h(r)}{(\tau-1) r^{\tau-1}} \rightarrow \gamma
$$

where γ is a positive constant. Then

$$
\mathbf{P}\left\{\eta_{(N)} \leq r\right\} \sim e^{-\gamma} .
$$

Theorem 2. Let $N, n \rightarrow \infty, N p_{r}\left(1-p_{r}\right) \rightarrow \infty$ and

$$
\frac{n-N m}{\sqrt{N}} \rightarrow \infty
$$

Then

$$
\mathbf{P}\left\{\mu_{r}=k\right\}=\frac{1+o(1)}{\sqrt{2 \pi N p_{r}\left(1-p_{r}\right)}} e^{-u^{2} / 2}
$$

uniformly in the integer k such that $u=\left(k-N p_{r}\right) / \sqrt{N p_{r}\left(1-p_{r}\right)}$ lies in any fixed finite interval.
Theorem 3. Assume that $N, n, r \rightarrow \infty$ and condition (2) hold. Then

$$
\mathbf{P}\left\{\mu_{r}=k\right\}=\frac{\left(N p_{r}\right)^{k}}{k!} e^{-N p_{r}}(1+o(1))
$$

uniformly in the integer k such that $\left(k-N p_{r}\right) / \sqrt{N p_{r}}$ lies in any fixed finite interval.
Proof strategy. Let ξ_{1}, \ldots, ξ_{N} be auxiliary independent identically distributed random variables with distribution (1). The technique for obtaining these theorems is based on the generalized allocation scheme suggested by V.F. Kolchin [2]. It is readily seen that for our subset of graphs

$$
\begin{equation*}
\mathbf{P}\left\{\eta_{1}=k_{1}, \ldots, \eta_{N}=k_{N}\right\}=\mathbf{P}\left\{\xi_{1}=k_{1}, \ldots, \xi_{N}=k_{n} \mid \xi_{1}+\ldots+\xi_{N} \leq n\right\} . \tag{3}
\end{equation*}
$$

Let $\xi_{i}^{(r)}, v_{i}^{(r)}, i=1, \ldots, N$, be two sets of independent random variables such that

$$
\mathbf{P}\left\{\xi_{i}^{(r)}=k\right\}=\mathbf{P}\left\{\xi_{i}=k \mid \xi_{i} \leq r\right\}, \quad \mathbf{P}\left\{v_{i}^{(r)}=k\right\}=\mathbf{P}\left\{\xi_{i}=k \mid \xi_{i} \neq r\right\} .
$$

It is shown in [3, 4], that from (3) it is not hard to get:

$$
\begin{equation*}
\mathbf{P}\left\{\eta_{(N)} \leq r\right\}=\left(1-\mathbf{P}\left\{\xi_{1}>r\right\}\right)^{N} \mathbf{P}\left\{\xi_{1}^{(r)}+\ldots+\xi_{N}^{(r)} \leq n\right\} / \mathbf{P}\left\{\xi_{1}+\ldots+\xi_{N} \leq n\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{P}\left\{\mu_{r}=k\right\}=\binom{N}{k} p_{r}^{k}\left(1-p_{r}\right)^{N-k} \mathbf{P}\left\{v_{1}^{(r)}+\ldots+v_{N-k}^{(r)} \leq n-k r\right\} / \mathbf{P}\left\{\xi_{1}+\ldots+\xi_{N} \leq n\right\} . \tag{5}
\end{equation*}
$$

From (4) and (5) we see that to obtain the limit distributions of $\eta_{(N)}$ and μ_{r} it suffices to consider the asymptotic behavior of the sums of independent random variables, binomial $\left(1-\mathbf{P}\left\{\xi_{1}>r\right\}\right)^{N}$ and binomial probabilities. By this way we proved Theorems $1-3$.

References

1. R. Hofstad. Random Graphs and Complex Networks. Volume 1. Cambridge Univ. Press, Cambridge, 2017.
2. V.F. Kolchin. Random Graphs. Cambridge Univ. Press, Cambridge, 2010.
3. A.N. Chuprunov, I. Fasekas. An analogue of the generalized allocation scheme: limit theorems for the maximum cell load. Discrete Mathematics and Applications, v. 24, iss. 3, 122-129.
4. A.N. Chuprunov, I. Fasekas. An analogue of the generalized allocation scheme: limit theorems for the number of cells containing a given number of particles. Discrete Mathematics and Applications, v. 24, iss. 1, 140-158.
