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     We consider configuration graphs where vertex degrees are independent identically 

distributed random variables. Configuration random graphs are being a good implementation of 

the social, telecommunication networks and Internet topology [1]. Numerous of real networks 

suggest that the distribution of degree   of each vertex can be specified by the relation 
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where 0)( xh  is a slowly varying function. Let N  be a number of vertices in the graph and 

random variables N ,...,1  are equal to the degrees of vertices with the numbers .,...,1 N  We 

consider the subset of random graphs under the condition ....1 nN     

     Denote by )(N  and r  the maximum vertex degree and the number of vertices with degree r  

respectively. Let .3  We introduce the following notations: 
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The next theorems are proved. 

     Theorem 1. Let nN , in such a way that 
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and ),( nNrr   are chosen such that 
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where   is a positive constant. Then 
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     Theorem 2. Let ,, nN   )1( rr pNp  and 

                                                        .


N

Nmn
 

Then 

                                               P
2/2

)1(2

)1(1
}{ u

rr

r e
pNp

o
k 







  

mailto:pavlov@krc.karelia.ru


uniformly in the integer k  such that )1(/)( rrr pNpNpku    lies in any fixed finite interval. 

     Theorem 3. Assume that rnN ,,  and condition (2) hold. Then 
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uniformly in the integer k  such that rr NpNpk /)(   lies in any fixed finite interval. 

     Proof strategy.  Let N ,...,1  be auxiliary independent identically distributed random 

variables with distribution (1). The technique for obtaining these theorems is based on the 

generalized allocation scheme suggested by V.F. Kolchin [2].  It is readily seen that for our 

subset of graphs 
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It is shown in [3, 4], that from (3) it is not hard to get: 
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From (4) and (5) we see that to obtain the limit distributions of )(N  and r  it suffices to 

consider the asymptotic behavior of the sums of independent random variables, binomial  

1( P
Nr}){ 1   and binomial probabilities. By this way we proved Theorems 1 – 3. 
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