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Let’s consider the case when the support of covariate C is the interval [0, 1]
and we describe our results on fixed design points 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1
at which we consider responses (survival or failure times) X1, ..., Xn and cen-
soring times Y1, ..., Yn of identical objects, which are under study. These re-
sponses are independent and nonnegative random variables (r.v.-s) with con-
ditional distribution function (d.f.) at xi, Fxi(t) = P (Xi ≤ t/Ci = xi). They
are subjected to random right censoring, that is for Xi there is a censoring
variable Yi with conditional d.f. Gxi(t) = P (Yi ≤ t/Ci = xi) and at n-th stage
of experiment the observed data is

S(n) = {(Zi, δi, Ci), 1 ≤ i ≤ n},

where Zi = min(Xi, Yi), δi = I(Xi ≤ Yi) with I(A) denoting the indicator
of event A. Note that in sample S(n) r.v. Xi is observed only when δi = 1.
Commonly, in survival analysis to assume independence between the r.v.-s Xi

and Yi conditional on the covariate Ci. But, in some practical situations, this
assumption does not hold. Therefore, in this article we consider a dependence
model in which dependence structure is described through copula function. So
let

Sx(t1, t2) = P (Xx > t1, Yx > t2), t1, t2 ≥ 0,

the joint survival function of the response Xx and the censoring variable Yx at
x. Then the marginal survival functions are SX

x (t) = 1− Fx(t) = Sx(t, 0) and
SY
x (t) = 1 − Gx(t) = Sx(0, t), t ≥ 0. We suppose that the marginal d.f.-s Fx

and Gx are continuous. Then according to the Theorem of Sklar [7], the joint
survival function Sx(t1, t2) can be expressed as

Sx(t1, t2) = Cx(SX
x (t1), SY

x (t2)), t1, t2 ≥ 0, (1)

where Cx(u, v) is a known copula function depending on x, SX
x and SY

x in a
general way.

Assume that at the fixed design value x ∈ (0, 1), Cx in (2) is Archimedean
copula, i.e.

Sx(t1, t2) = ϕ[−1]
x (ϕx(SX

x (t1)) + ϕx(SY
x (t2))), t1, t2 ≥ 0, (2)
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where copula generator function ϕx is strict, i.e. ϕx(0) =∞ and hence ϕ
[−1]
x =

ϕ−1
x . From (3), it follows that

P (Zx > t) = 1−Hx(t) = Hx(t) = SZ
x (t) = Sx(t, t) =

= ϕ−1
x (ϕx(SX

x (t)) + ϕx(SY
x (t))), t ≥ 0, (3)

Let H
(1)
x (t) = P (Zx ≤ t, δx = 1) be a subdistribution function and Λx(t) is

crude hazard function of r.v. Xx subjecting to censoring by Yx, that is

Λx(dt) =
P (Xx ∈ dt,Xx ≤ Yx)

P (Xx ≥ t, Yx ≥ t)
=
H

(1)
x (dt)

SZ
x (t−)

. (4)

From (4) and (5) one can obtain following expression of survival function SX
x :

SX
x (t) = ϕ−1

x [−
∫ t

0

SZ
x (u−)ϕ′x(SZ

x (u))dΛx(u)] =

= ϕ−1
x [−

∫ t

0

ϕ′x(SZ
x (u))dH(1)

x (u)], t ≥ 0, (5)

(see, for example, [3,4]). In order to constructing the estimator of SX
x according

to representation (6), we introduce some smoothed estimators of SZ
x , H

(1)
x and

regularity conditions for them. Similarly to Breakers and Veraverbeke [5], we
will also use the Gasser-Müller weights

ωni(x, hn) =
1

qn(x, hn)

∫ xi

xi−1

1

hn
π(
x− z
hn

)dz, i = 1, ..., n,

with

qn(x, hn) =

∫ xn

0

1

hn
π(
x− z
hn

)dz,

where x0 = 0, π is a known probability density function(kernel) and {hn, n ≥
1} is a sequence of positive constants, tending to zero as n → ∞, called
bandwidth sequence. Let’s introduce the weighted estimators of Hx, S

Z
x and

H
(1)
x respectively as

Hxh(t) =

n∑
i=1

ωni(x, hn)I(Zi ≤ t),

SZ
xh(t) = 1−Hxh(t), (6)

H
(1)
xh (t) =

n∑
i=1

ωni(x, hn)I(Zi ≤ t, δi = 1).

Then pluggin in (6) estimators (7) we get corresponding estimator of SX
x (t) as

SX
xh(t) = 1− Fxh(t) = ϕ−1

x [−
∫ t

0

ϕ′x(SZ
xh(u))dH

(1)
xh (u)], t ≥ 0, (7)
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Let

E(t) = E(t;SX) = E (X1 − t/X1 > t) = (SX(t))−1·
∫ +∞

t

SX(y)dy, t ∈ [0, TX ] ,

is mean residual life function of r.v. X1. Consider estimate of E (t):

Exh(t) =

{
E
(
t;SX

xh

)
, x ∈ [0, 1) ,

0, t ≥ 0.
(8)

Remark that in the case of no covariate, estimator (7) reduces to estimator
first obtained by Zeng and Klein [9]. In the case of the independent copula
ϕ(y) = −logy, Zeng and Klein estimate reduces to a exponential-hazard es-
timate (see, [3,8,9]). Also it is well-known that under independent censoring
case Kaplan-Meier’s [6] product-limit estimator and exponential-hazard esti-
mators are asymptotical equivalent. Therefore, we will show that estimator
(7) and copula-graphic estimator of Breakers and Veraverbeke [5] have the
same asymptotic behaviours(see, [3]).In this article we also state our result on
consistency of estimator (8).

We note that in paper Abdushukurov [4] author proposed a new another
estimator of survival function in the presence of covariate and studied its
large sample properties. This estimator is an extended analogue of relative-
risk power estimator introduced in Abdushukurov [4].
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