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The problem of quality of service estimation is the most important one in
the creation and configuration of modern telecommunications systems. For
many years, Markov processes have been successfully used in the analysis
of voice and text message flows, which in many cases allow us to obtain
explicit formulas for calculating the stationary performance characteristics
in the models under consideration.

However, information in modern telecommunications systems has a com-
plex structure that is radically different from conventional telephony or mail
services. For the first time, this fact was noticed in the early nineties after
conducting high-precision measurements of Internet traffic in the Bell labo-
ratory. Analysts noted three important distinguishing features inherent in
data flows in computer networks: self-similarity with a wide range of traffic
aggregation, slowly decreasing correlation (long memory) of observa-
tions, and heavy tails of load distributions coming from sources.

Theoretical and empirical studies have shown that ignoring these features
leads to serious errors in QoS estimates. Therefore, it is necessary to build
new traffic models that would have the necessary properties. Currently, the
most popular models of this type are fractional Brownian motion and
stable Levy motion. It turned out that these models are closely related to
the heavy tails of the distributions and the connection speed remote sources
with the server. Namely, in the case of fast connection we get a fractional
Brownian motion, and in the case of slow connection – stable Levi motion.
(see, for example, [1]).
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In a number of empirical studies (see, for example, [2] and [3]) it has been
shown that very often traffic contains both of the components noted above.
For such traffic there is no general methods to assess the quality of service.
Note only the works ([4] and [?]), where the asymptotic lower bounds of the
large buffer overflow probability were obtained for incoming streams based on
fractional Brownian motion and the sum of independent fractional Brownian
motions with different exponents H.

In our report we analyse the nonhomogenous traffic model based on sum
of independent Fractional Brownian motion and symmetric α–stable Levy
process with different Hurst exponents H1 and H2. For such model we find
asymptotical bounds for the overflow probability when the size of buffer
b→∞.

Consider a queuing system to which the next input stream is fed:

A(t) = mt+ σ1BH1(t) + σ2Lα(t), (1)

wherem = m1 +m2 > 0 – average input flow rate ; BH1 = (BH1(t), t ∈ R1) –
fractional Brownian motion with Hurst parameter H1, Lα = (Lα(t), t ∈ R1)
– symmetric α-stable Levy motion with parameter α = 1/H2. So both
components of the input process are self-similar with indexes H1 and H2 =
1/α.

The process A(t), t ≥ 0 describes the total load received by the commu-
nication node in the time interval [0, t].

Assume that 1/2 < H1, H2 < 1 and the processes BH1(t), Lα(t) are
independent.

Let the queuing system in question consists of a single device with a
constant service rate C > 0. Then the traffic intensity is r = C −m > 0.

We are interested in estimation of so-called overflow probability, i. e.
the probability that stationary workload Q exceeds some threshold level b,
namely ε(b) := P [Q > b]. Using the method proposed by Norros we get the
asymptotic bounds for ε(b) in the case of large b.

Our main results are the following theorems. Denote H = min(H1, H2)
and H̃ = max(H1, H2).

Theorem 1. Consider a queuing system in which there is a single service
device with a buffer of size b and a constant service rate C. Let the process
of the load entering the system in the interval [0, t] be described by the model
(1). If the traffic intensity is r = C −m > 0, then the following asymptotic
estimate is valid for the probability ε(b) that the stationary load will exceed a
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certain level b:

ε(b) = P [Q > b] ≥ C1 · b−(1−H)α, b→∞, (2)

where C1 is some explicitly calculated constant.
Theorem 2. Consider a queuing system in which there is a single service

device with a buffer of size b and a constant service rate C. Let the process
of the load entering the system in the interval [0, t] be described by the model
(1). If the traffic intensity is r = C −m > 0, then the following asymptotic
estimate is valid for the probability ε(b) that the stationary load will exceed a
certain level b:

ε(b) = P [Q > b] ≤ C2 · b−(1−H̃)α, b→∞, (3)

where C2 is some explicitly calculated constant.
Unfortunately the lower and upper bounds have a different order with

respect to b. Similar results can be obtained in the case when the number of
components of the incoming stream is greater than 2.
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