Random Mappings with Constraints on the Component Sizes

A.L. Yakymiv*
Steklov Mathematical Institute RAS, 8 Gubkina St., Moscow 119991, Russia
arsen@mi-ras.ru

Let X be an arbitrary fixed finite set having n elements. By \mathfrak{S}_{n} we denote a semigroup of all mappings from the set X into itself. Each mapping $\omega(\cdot) \in \mathfrak{S}_{n}$ corresponds to a graph $\Gamma(X, \sigma)$ whose vertices $x, y \in X$ are connected by an arc (x, y) if $y=\omega(x)$. As it's known, every graph $\Gamma(X, \omega)$ consists of connected components, each consisting of a single cycle and trees. Fix an arbitrary set D of natural numbers. By $\mathfrak{S}_{n}(D)$ denote a set of mappings from \mathfrak{S}_{n} with component sizes belonging to the set D. Let a random mapping $\sigma=\sigma_{n}(D)$ be uniformly distributed on $\mathfrak{S}_{n}(D)$. This mapping is introduced in [10]. Random mappings with another restrictions were considered by a number of authors beginning from [9]. Brief reviews one can see in $[3,4,5,8]$.

Let as consider the following two classes of the sets D. We say that a set D belongs to the class F_{1} iff $D=\bigcup_{i=1}^{M} D_{i}$, where $M \in N, D_{i}=\{m \in$ $\left.N: m=a_{i} k+b_{i}, k=0,1,2, \ldots\right\}$ and the integers $a_{i}>1,1 \leq b_{i} \leq$ $a_{i}-1,\left(a_{i}, b_{i}\right)=1$ with $D_{i} \cap D_{j}=\emptyset, \forall i \neq j$. Also, we say that a set D belongs to the class F_{2}, iff $D=\left\{m \in N: m / k_{i} \notin N, i=1, \ldots, s\right\}$ for some $s \in N$ and $k_{1}, \ldots, k_{s} \in N$ such that $k_{i} \geq 2, i=1, \ldots, s$ and $\left(k_{i}, k_{j}\right)=1 \forall i \neq j$.

It may be not obvious that there are a large number of mutually nonintersecting progressions $D_{i}, i=1, \ldots, M$ with different a_{i}, whose union belongs to the class F_{1}. Therefore, we give the following example.

$$
\begin{aligned}
D_{1} & =\{m \in N: m=1+5 k, k=0,1,2, \ldots\}, \\
D_{2} & =\{m \in N: m=2+15 k, k=0,1,2, \ldots\}, \\
D_{3} & =\{m \in N: m=3+20 k, k=0,1,2, \ldots\}, \\
D_{4} & =\{m \in N: m=4+25 k, k=0,1,2, \ldots\} .
\end{aligned}
$$

It is easy to see that the progressions $D_{1}, D_{2}, D_{3}, D_{4}$ belong to the class F_{1} and are mutually disjoint.

[^0]By $\varrho=\varrho(D)$, denote the density of the set D in the set of natural numbers:

$$
\varrho(D)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \chi\{i \in D\}>0
$$

Put

$$
\alpha=1-\frac{\varrho}{2}, l(n)=\sum_{i \in D(n)} \frac{1}{i}
$$

where $D(n)=D \cap[1, n]$. Denote

$$
f_{\alpha}(x)=(1-x)^{-\alpha}-1, \quad u_{\alpha}(x)=(1-x)^{-\alpha} .
$$

Let $\zeta_{n}=\zeta_{n}(D)$ be a total number of components in random mapping $\sigma=$ $\sigma_{n}(D)$.

Theorem 1 Suppose that $D \in F_{1} \cup F_{2}$. Then, for some $\beta \in(0,1 / 2]$

$$
\mathrm{E} \zeta_{n}=\frac{1}{2} l(n)+J(n)+O\left(\frac{\ln n}{n^{\beta}}\right)
$$

as $n \rightarrow \infty$, where

$$
J(n)=\frac{1}{2} \sum_{m \in D(n-1)} \frac{1}{m} f_{\alpha}\left(\frac{m}{n}\right) \rightarrow \frac{\varrho}{2} \int_{0}^{1} \frac{f_{\alpha}(x)}{x} d x<\infty
$$

Theorem 2 Let $D \in F_{1} \cup F_{2}$. Then

$$
\operatorname{Var}\left(\zeta_{n}\right)=\mathrm{E} \zeta_{n}+\frac{1}{4} J_{0}(n)+\frac{1}{4} J_{1}(n)+O\left(n^{-\beta} \ln ^{2} n\right)+O\left(n^{-\nu}\right)
$$

where

$$
\begin{gathered}
J_{0}=\sum_{m, k \in D, m+k \geq n} \frac{1}{m k} u_{\alpha}\left(\frac{m}{n}\right) u_{\alpha}\left(\frac{k}{n}\right) \\
\rightarrow \varrho^{2} \int_{(x, y) \in(0,1)^{2}: x+y \geq 1}(1-x)^{-\alpha}(1-y)^{-\alpha} \frac{d x d y}{x y}<\infty \\
J_{1}=\sum_{m, k \in D(n-1), m+k<n} \frac{1}{m k}\left(u_{\alpha}\left(\frac{m+k}{n}\right)-u_{\alpha}\left(\frac{m+k}{n}-\frac{m k}{n^{2}}\right)\right) . \\
\rightarrow \varrho^{2} \int_{x, y>0, x+y<1} \frac{1}{x y}\left(u_{\alpha}(x+y)-u_{\alpha}(x+y-x y)\right) d x d y<\infty \\
\nu=\frac{1-\alpha}{2(2-\alpha)}
\end{gathered}
$$

The proofs of Theorems 1 and 2 essentially use the results of the papers $[7,11]$.

Notation 1 If the assumptions of Theorem 1 are satisfied, then

$$
l(n)=\varrho \ln n+c(D)+O\left(\frac{1}{n}\right)
$$

as $n \rightarrow \infty$. Here the constant $c(D)$ can be calculated explicitly [11].
Corollary 1 Under the assumptions of Theorem 1,

$$
\mathbf{D} \zeta_{n} \sim \mathbf{E} \zeta_{n} \sim \frac{\varrho}{2} \ln n
$$

as $n \rightarrow \infty$.
Let's say a few words on the previous results. It is shown in [2] that $\mathbf{E} \zeta_{n}=$ $(\ln n) / 2+O(1)$ as $n \rightarrow \infty$ in the case $D=N$. Note also the paper [6]. One can deduce from here the correct in order estimate for the variance of the random variable ζ_{n}. The classes F_{1} and F_{2} were introduced in [1].

In this talk, we also give a survay on the asymptotic results obtained earlier for $\sigma_{n}(D)$.

References

[1] Bolotnikov, Yu. V., Sachkov, V. N., and Tarakanov, V. E. On some classes of random variables on cycles of permutations, Math. USSR Sb. 36, 87-99 (1980).
[2] Harris B. Probability distribution related to random mappings, Ann. Math. Stat., 1960, v. 31, no 4, 1045-1062.
[3] Harris B. A survay of the early history of random mappings, Probabilistic Methods in Discrete Mathematics, TVP, Moscow, 1993, pp. 1-22.
[4] Kolchin, V. F. Random Mappings, Optimization Software, New York, 1986.
[5] Kolchin, V. F. Random Graphs, Cambridge Univ. Press, Cambridge, 1999.
[6] Manstavicius, E. A Turán-Kubilius Inequality on Mappings of a Finite Set. From arithmetic to zeta-functions, 295-307, Springer, 2016.
[7] Pavlov, A. I. On two classes of permutations with number-theoretic constraints on cycle lengths. Math. Notes 62, no. 5-6, 739-746 (1998).
[8] Pavlov Yu. L. Random forests, VSP, Utrecht, 2000, 122 pp.
[9] Sachkov, V. N. Mappings of a finite set with limitations on contours and height, Theory Probab. Appl. 17, 640-656 (1972).
[10] Timashëv A. N. Random components in the general allocation sceme. Moscow, Publishing House "Academy", 2017 (in Russian).
[11] Yakymiv A. L. Variance of the cycle number of a random A permutation. (Russian) Diskret. Mat. 32 (2020), no. 3, 135-146.

[^0]: *This work is supported by the Russian Science Foundation under grant 19-11-00111

