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Let X be an arbitrary fixed finite set having n elements. By &, we
denote a semigroup of all mappings from the set X into itself. Each mapping
w(:) € 6, corresponds to a graph I'(X, o) whose vertices z,y € X are
connected by an arc (x,y) if y = w(z). As it’s known, every graph I'(X,w)
consists of connected components, each consisting of a single cycle and trees.
Fix an arbitrary set D of natural numbers. By &,(D) denote a set of
mappings from &,, with component sizes belonging to the set D. Let a
random mapping ¢ = o,(D) be uniformly distributed on &, (D). This
mapping is introduced in [10]. Random mappings with another restrictions
were considered by a number of authors beginning from [9]. Brief reviews
one can see in [3, 4, 5, 8].

Let as consider the following two classes of the sets D. We say that a
set D belongs to the class Fy iff D = JY, D;, where M € N, D; = {m €
N: m=ak+b, k=0,1,2,...} and the integers a; > 1, 1 < b; <
a; — 1, (a;,b;) = 1 with D, " D; = 0, Vi # j. Also, we say that a set
D belongs to the class Fy, if D = {m € N : m/k; ¢ N, i = 1,...,s}
for some s € N and kq,...,ks € N such that k;, > 2, i = 1,...,s and
(ki kj) =1 Vi #j.

It may be not obvious that there are a large number of mutually non-
intersecting progressions D;, ¢ = 1,..., M with different a;, whose union
belongs to the class Fj. Therefore, we give the following example.

Di={meN: m=1+5k k=0,1,2,...},
Dy={meN: m=2+15k, k=0,1,2,...},
Ds={meN: m=3+20k, k=0,1,2,...},
Dy={meN: m=4+25k, k=0,1,2,...}.

It is easy to see that the progressions D1, Do, D3, D4 belong to the class Fi
and are mutually disjoint.
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By 0 = o(D), denote the density of the set D in the set of natural
numbers:
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Let ¢, = (u(D) be a total number of components in random mapping o =
on(D).

Theorem 1 Suppose that D € Fy U Fy. Then, for some 3 € (0,1/2]
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The proofs of Theorems 1 and 2 essentially use the results of the papers
[7, 11].



Notation 1 If the assumptions of Theorem 1 are satisfied, then
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as n — oo. Here the constant c¢(D) can be calculated explicitly [11].

Corollary 1 Under the assumptions of Theorem 1,
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as n — oQ.

Let’s say a few words on the previous results. It is shown in [2] that E¢, =
(Inn)/2+ O(1) as n — oo in the case D = N. Note also the paper [6]. One
can deduce from here the correct in order estimate for the variance of the
random variable (,. The classes F| and Fy were introduced in [1].

In this talk, we also give a survay on the asymptotic results obtained

earlier for o, (D).
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