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We consider configuration random graphs with N vertices. The degrees
of vertices are independent identically distributed random variables. The ran-
dom variables ξ1, . . . , ξN are equal to degrees of the vertices with the number
1, . . . , N . The degrees of the vertices are drawn independently from an arbi-
trary given distribution. Assume that we know only the limit behaviour of the
tail of this distribution as k →∞ :

P{ξi = k} =
d

kg(ln k)h
,

where i = 1, . . . , N, d > 0, g > 1, h > 0. These graphs were first studied in
[1].

We consider a subset of this graphs under the condition that the sum of
vertex degrees at most n. Denote by η1, . . . , ηN the random variables equal to
the degrees of vertices in such a conditional random graph. It is evident that
these random variables are dependent, and for natural k1, . . . , kN such that
k1 + . . .+ kN ≤ n

P{η1 = k1, . . . , ηN = kN} = P{ξ1 = k1, . . . , ξN = kN |ξ1 + . . .+ ξN ≤ n}. (1)

The equation (1) means that for the random variables ξ1, . . . , ξN and η1, . . . , ηN
the analogue of the generalized allocation scheme is valid (see [2]). The general-
ized allocation scheme itself was investigated and suggested by V.F.Kolchin [3].
It is shown in [2,4], that for the maximum vertex degree η(N) and µr equal to
the number of vertices of degree r is true

P{µr = k} =

(
N

k

)
pkr (1− pr)N−kP{ζ

(r)
N−k ≤ n− kr}
P{ζN ≤ n}

(2)

and

P{η(N) 6 r} = (1− Pr)N
P{ζ̃(r)N ≤ n}
P{ζN ≤ n}

, (3)

where ζN = ξ1 + . . .+ξN , ζ
(r)
N−k = ξ

(r)
1 + . . .+ξ

(r)
N−k, ζ̃

(r)
N = ξ̃

(r)
1 + . . .+ ξ̃

(r)
N , Pr =

P{ξ1 > r} and two sets of independent identically distributed random vari-

ables ξ
(r)
1 , . . . , ξ

(r)
N and ξ̃

(r)
1 , . . . , ξ̃

(r)
N such that

P{ξ(r)i = j} = P{ξ1 = j|ξ1 6= r}, j = 1, 2, . . . , i = 1, . . . , N,

P{ξ̃(r)i = j} = P{ξ1 = j|ξ1 6 r}, j = 1, 2, . . . , i = 1, . . . , N.
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Based on equations (2) and (3) we obtained the limit distributions of η(N)

and µr in these conditional configuration graphs under various types of be-
haviour N and n tending to infinity. Below we will give one of the theorems.
Let

BN =


(N(g − 1)h/ lnhN)1/(g−1), 1 < g < 3;√
N ln1−hN, g = 3, h < 1;√
N ln lnN, g = 3, h = 1;

σ
√
N, g > 3 or g = 3, h > 1,

m = Eξ1, σ2 = Dξ1.

Theorem 1. Let N,n→∞ and one of the following conditions hold:

1. 1 < g < 2, n/BN > C > 0;

2. g = 3, 0 6 h 6 1, (n−Nm)/BN > −C > −∞;

3. g = 3, h > 1, (n−Nm)/BN →∞
g = 3, h > 1, r = m, (n−Nm)/BN > −C > −∞;

4. g > 3, (n−Nm)/BN →∞
g > 3, r = m, (n−Nm)/BN > −C > −∞.

Then for any fixed natural r

P{µr = k} =
e−u2

r/2√
2πNpr(1− pr)

(1 + o(1)))

uniformly in the integers k > 0 such that ur = (k −Npr)/
√
Npr(1− pr) lies

in any fixed finite interval.
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