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This work is devoted to the study of the existence and uniqueness of the
solution of a stochastic differential equation in Lp, for 1 < p < 2. The classical
theorem for the space L2 is widely known if∣∣b (t, x)− b (t, y, )

∣∣+
∣∣σ (t, x)− σ (t, y)

∣∣ 6 L
∣∣x− y∣∣

and b(t, x)2 + σ(t, x)2 6 c
(
1 + x2

)
, x ∈ R, t ∈ [0, T ], then the solution to the

SDE

dXt = b (t,Xt) dt+ σ (t,Xt) dWt, 0 6 t 6 T,X0 = Z

exists and is unique in the space L2 [1]. Let us investigate the existence of a
solution in the space Lp. Let X0

t = Z, t ∈ [0, T ] and for n > 1

X
(n)
t = Z +

t∫
0

b
(
s,X(n−1)

s

)
ds+

t∫
0

σ
(
s,X(n−1)

s

)
dW (s) .

1) Proof of progressive measurability for drift functions b (s,Xs), diffusion

σ (s,Xs) and X
(n)
t is carried out similarly [1]. Let us prove that they lie in Lp.

Let us find E
(
X

(n)
t

)p
. We successively apply Jensen’s inequality and Jensen’s

integral inequality.

E
(
X

(n)
t

)p
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s
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+ E

 t∫
0

σ
(
s,X(n−1)

s

)
dWs

p
6 3p−1

(
EZp + T p−1
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0

E
(
b
(
s,X(n−1)

s

))p
ds+ E

 t∫
0

σ
(
s,X(n−1)

s

)
dWs

p)
(1)

Applying to the third term sequentially the martingale inequality from [2]
and Jensen’s inequality for the expectation, taking into account that for p/2,
and for 1 < p < 2 it is a concave function
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E

 t∫
0

σ
(
s,X(n−1)

s

)
dWs

p

6 Bp

 t∫
0

E
∣∣σ (s,X(n−1)

s

)∣∣2ds
p/2

As you can see, if the diffusion and drift functions satisfy the condition
b(t, x)2 +σ(t, x)2 6 c (1 + xp) , x ∈ R, t ∈ [0, T ] , 1 6 p < 2,then the second and
third integrals in (1) are bounded, and for an arbitrary 1 6 p < 2 we obtain

that X
(n)
t belong to the space Lp

2)Now let’s start investigating the convergence of this sequence.

E
∣∣X(1)

t −X(0)
t

∣∣p = E
∣∣ t∫
0

b (s, Z) ds+

t∫
0

σ (s, Z) dWs

∣∣p 6

6 2p−1E
∣∣ t∫
0

b (s, Z) ds
∣∣p + 2p−1E

∣∣ t∫
0

σ (s, Z) dWs

∣∣p 6

6 2p−1T p−1

t∫
0

E (b (s, Z))p ds+ 2p−1Bp

 t∫
0

E
∣∣σ (s, Z)

∣∣2ds
p/2

6

6M1t+M2t
p/2 6M1t+M2t 6Mt, assume M1,M2,M − some constants

For the n-th approximation we have:
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t −X(n)
t

∣∣p 6

6 E
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0
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b
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))
ds+

t∫
0
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σ
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s
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s

∣∣ds
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+ 2p−1E
∣∣ t∫
0
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s

∣∣) dWs

∣∣p
Now it is necessary to estimate the last integral from above

E
∣∣ t∫
0

(
L
∣∣X(n)

s −X(n−1)
s

∣∣) dWs

∣∣p 6 CpE
t∫

0

∣∣L∣∣X(n)
s −X(n−1)

s

∣∣∣∣pds
The correctness of the inverse estimate for this martingale inequality was

proved in [3] for 1 < p < 2.
In order to prove that there are functions for which our estimate is

applicable, a software package for the numerical simulation of stochastic
processes was written and it was shown that such functions exist. The
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simulation was carried out using three different methods, direct stochastic
Monte Carlo simulation for a random process, as well as calculating the
change in density over time using finite difference and finite element methods.
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