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The problem of stability estimation of Markov control processes considered
here was, probably, for the first time set and solved for certain particular
processes, in the papers Van Dijk and Puterman [1] and Gordienko [2]. It
turned out that the method of probability metrics, for the most part developed
in the works of V. M. Zolotarev (see e.g. Zolotarev [3]) has been very helpful
to tackle problems of this type.

Let us consider a discrete-time Markov controlled process of the form:

Xt = F (Xt−1, at, ξt), t = 1, 2, . . . , (1)

where:

� Xt is a a state of the process belonging to a separable metric space X;

� ξ1, ξ2, . . . is a sequence of i.i.d. random vectors with values in a separable
metric space S;

� when Xt−1 = x ∈ X, at ∈ A(x) is the control (action) at time t, that is
selected from a given compact subset A(x) ⊂ A; here the action set A is
also a separable metric space;

� finally, F : X×A× S → X is a given measurable function.

A sequence π = (a1, . . . , at, . . . ), where the control at can depend on previ-
ous states and actions, is called control policy , or simply policy. We denote by Π
the set of all policies. A policy π ≡ f is called stationary if there is a measurable
function f : X→ A such that for each t = 1, 2, . . . , at = f(Xt−1) ∈ A(Xt−1).

The optimal policy π∗ is such that provides a maximum value of a perfor-
mance criteria, which in this talk is specified to be an expected total discounted
reward:

V (x, π) = Eπx

∞∑
t=1

αt−1r(Xt−1, at), (2)

where α ∈ (0, 1) is a given discount factor, and r(x, a) is the one-step reward
acquired when the process is in the state x and the action a is selected. We
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allow the function f : X× A→ R to be unbounded. In (2) x ∈ X is the initial
state of the process.

Let G be the distribution of the random vector ξt. In many applied con-
trolled processes all components of the above model, excepting G, can be
known. For the latter, commonly, some approximation G̃ (to G) is available.
This approximation can be obtained by some theoretical speculations and /or
statistical procedures.

In this way, the “real” control process (1) is unavailable for a researcher,
and she/he should deal with its approximation:

X̃t = F (X̃t−1, ãt, ξ̃t), t = 1, 2, . . . , (3)

where ξ̃1, ξ̃2, . . . are i.i.d. random vectors distributed according to G̃.
We let certain conditions (see, e.g. Hernandez-Lerma and Lasserre [4])

which ensure the existence of optimal stationary policies f∗ and f̃∗ for the
processes (1) and (3), respectively; that is:

V (x, f∗) = sup
π∈Π

V (x, π), x ∈ X;

Ṽ (x, f̃∗) = sup
π∈Π

Ṽ (x, π), x ∈ X,

where, similarly to (2),

Ṽ (x, π) = Eπx

∞∑
t=1

αt−1r(X̃t−1, ãt).

The natural question arises: Is f̃∗ a “good approximation” to the not at-
tainable optimal policy f∗? Having in the mind that the policy f̃∗ is intended
in order to control the “original” process (1), we use the following stability
index

∆(x) := V (x, f∗)− V (x, f̃∗) ≥ 0, x ∈ X

as a measure of the quality of the approximation.
The problem of stability estimation settled here is establishing inequalities

of the type:

∆(x) ≤ B(x)µ(G, G̃), x ∈ X, (4)

where µ is a suitable probability metric. Taking into account a possible un-
boundedness of the one-step reward function r(x, a), an appropriate candidate
for µ in (4) is the, so-called, weighted total variation metric. In this talk sup-
posing that S = Rk and assuming relevant moment conditions on G and G̃,
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we present a version of the stability inequality (4) with µ = V being the usual
total variation metric.

Note, that under additional, rather restrictive Lipschitz conditions on the
processes {Xt} and {X̃t} a variant of (4), where µ is the Kantorovich metric,
was proven in Gordienko et al [5].
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