Random Walks for Solutions of Some Elliptic Equations with Discontinuous Coefficients

A. S. Sipin ${ }^{1}$, A. N. Kuznetsov ${ }^{1}$

${ }^{1}$ Vologda State University, Vologda, cac1909@mail.ru, pmqqkan@gmail.com
We consider stochastic algorithms for solving the first boundary value problem for the equation

$$
\begin{equation*}
M_{i} u(x)=\operatorname{div}\left(\varepsilon_{i}(x) \cdot \operatorname{grad} u(x)\right)=0, \quad x \in D_{i}, \quad i=1,2 \tag{1}
\end{equation*}
$$

in a bounded domain $D \subset \mathbb{R}^{m}, \quad(m \geq 3)$, divided into two parts D_{1} and D_{2} with a common smooth boundary γ. The functions $\varepsilon_{1}(x)$ and $\varepsilon_{2}(x)$ have partial derivatives that are continuous in $\overline{D_{1}}$ and $\overline{D_{2}}$, respectively. They are bounded from below by the constant $\nu>0$, and their normal derivatives on the boundary are consistent:

$$
\begin{equation*}
\lim _{y \in D_{1}, y \rightarrow x} \varepsilon_{1}(y) \frac{\partial}{\partial n} u(y)=\lim _{y \in D_{2}, y \rightarrow x} \varepsilon_{2}(y) \frac{\partial}{\partial n} u(y), x \in \gamma \tag{2}
\end{equation*}
$$

On the outer boundary Γ of the domain $D=D_{1} \cup D_{2}$ the Dirichlet condition $u(x)=\varphi(x)$ is satisfied.

When constructing a statistical algorithm, the boundary value problem is replaced by an integral equation of the second kind with a substochastic kernel. The unbiased estimators of the solution are constructed on the trajectories of a homogeneous Markov chain with discrete time (random walk), the transition probability of which coincides with this kernel. For problem (1)-(2) with constants ε_{1} and ε_{2}, the estimators are constructed on trajectories of Random Walk on Hemispheres in the papers Simonov [1], Ermakov and Sipin [2], Sipin [3].

In the case of a plane boundary γ, we use a Random Walk on Balls, which is based on formulas about the mean value for the solution $u(x)$ in the ball $T(x) \subset D$ centered at the point $x \in D$, the radius of which is R. Namely, let $T(x) \subset D_{i}, r=\|x-y\|, \sigma_{m}$ is full solid angle in \mathbb{R}^{m}. Then,

$$
\begin{equation*}
u(x)=\frac{1}{\sigma_{m} R(m-2) \varepsilon_{i}(x)} \int_{T} u(y) M_{i} v(y) d y=\int_{T} p_{i}(x, y) u(y) d y, \quad x \in D_{i} . \tag{3}
\end{equation*}
$$

For $x \in \gamma$, we have

$$
\begin{align*}
u(x)=\frac{2}{R \sigma_{m}(m-2)\left(\varepsilon_{1}(x)+\varepsilon_{2}(x)\right)}\left(\int_{T \cap D_{1}} M_{1} v(y) u(y) d y+\right. \\
\left.\quad+\int_{T \cap D_{2}} M_{2} v(y) u(y) d y\right)=\int_{T} p(x, y) u(y) d y \tag{4}
\end{align*}
$$

(C) Sipin A. C., Kuznetsov A. N., 2021
where

$$
v(y)=\int_{r}^{R}\left(\frac{1}{r^{m-2}}-\frac{1}{\rho^{m-2}}\right) d \rho
$$

There exists R_{0} such that for $R<R_{0}$ the kernels of the integral operators in formulas (3) - (4) are stochastic.

To define the process of Random Walk on Balls, we take $\delta>0$ and define Γ_{δ} and γ_{δ} as the δ-neighborhoods of the boundaries Γ and γ, respectively. Let the radius of the ball $T(x))$ is $R(x)=\min \left(R_{0}, \operatorname{dist}(x, \Gamma)\right)$. The transition from the current state to the next is carried out in accordance with the transition probability densities determined by formulas (3) - (4). The Random Walk continues in the region D_{1} or in the region D_{2} until it reaches Γ_{δ} or γ_{δ}. After that, there is a jump to the nearest point of the boundary Γ or γ, respectively. At the boundary Γ, the process ends and an estimator is calculated. It is equal to the value of $\varphi(x)$ at the last point of the walk. From the boundary γ, the walk returns to D_{1} or to D_{2}, in accordance with the transition probability density $p(x, y)$ from formula (4).

The performance of the algorithm is ensured by the following properties:

1. The Random Walk on Balls in domain D_{1} (in domain D_{2}) attains $\gamma_{\delta} \cup \Gamma_{\delta}$ in a finite number of steps. The average number of steps is finite.
2. The average number of visits by the process to the boundary γ_{δ} is finite.

In the case of a smooth boundary, the walk is constructed in a similar way.

Acknowledgement. This research was supported by Russian Science Foundation under grant 19-11-00020.

References

1. Simonov N.A. Monte Carlo methods for solving elliptic equations with boundary conditions containing the normal derivative Dokl. Math., 74 (2006), pp. 656-659.
2. Ermakov, S.M., Sipin, A.S. The walk in hemispheres process and its applications to solving boundary value problems. Vestnik St.Petersb. Univ.Math. 42, 155163 (2009).
3. Sipin, A.S. On Stochastic Algorithms for Solving Boundary-Value Problems for the Laplace Operator. J Math Sci 225, 812817 (2017)
