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In applied studies, the normal approximation is often used for the distribution of data with (at
least assumed) additive structure. This tradition is based on the central limit theorem of probability
theory which states that the distributions of sums of (independent) random variables satisfying
certain conditions (say, the Lindeberg condition) converge to the normal law as the number of
summands infinitely increases. However, it is practically impossible to check the conditions providing
the validity of the central limit theorem when the observed sample size is limited. In particular,
with moderate sample size, the histogram constructed from the sample from the Cauchy distribution
whose tails are so heavy that even the mathematical expectation does not exist, is practically visually
indistinguishable from the normal (Gaussian) density. Therefore it is very important to know what
the real accuracy of the normal approximation is in the cases where it is used despite it is theoretically
inapplicable. Moreover, in some situations related with computer simulation, if the distributions of
separate summands in the sum belong to the domain of attraction of a stable law with characteristic
exponent less than two, then the observed distance between the distribution of the normalized sum
and the normal law first decreases as the number of summands grows and begins to increase only when
the number of summands becomes large enough. In the present paper an attempt is undertaken to
give some theoretical explanation to this effect. In Section 2 we introduce the notation, give necessary
definitions and formulate some auxiliary results. In Section 3 the theorem is proved presenting the
upper bound for the accuracy of the invalid normal approximation. In Section 4 the problem of
evaluation of the threshold number of summands providing best possible accuracy of the invalid
normal approximation is considered.

Throughout the paper we assume that all the random variables are defined on the same probability
space (Ω,F,P). The mathematical expectation and variance with respect to the probability measure
P will be denoted E and D, respectively. The symbol d

= means the coincidence of distributions.
For n ∈ N, let X1, . . . , Xn be a homogeneous sample, that is, a set of independent identically

distributed random variables with common distribution function F (x) = P(X1 < x), x ∈ R. For
simplicity, without serious loss of generality we will assume that F (x) is continuous.

Denote Sn = X1 + . . . + Xn. The indicator of a set (event) A ∈ F will be denoted IA = IA(ω),
ω ∈ Ω:

IA(ω) =

{
1, ω ∈ A,

0, ω /∈ A.

Consider u > 0 such that 0 < F (u) < 1. It is obvious that Xj = XjI{|Xj |≤u} +XjI{|Xj |>u}. Then

Sn =
∑n

j=1
XjI{|Xj |≤u} +

∑n

j=1
XjI{|Xj |>u} ≡ S(≤u)

n + S(>u)
n .

We will follow the lines of approach described in [3]. The key point of this approach is the statement
that will be formulated here as the following lemma.
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Lemma 1. Let u > 0 so that 0 < F (u) < 1. Then

S(≤u)
n

d
=

∑Nn(u)

j=0
X

(≤u)
j (1)

and
S(>u)
n

d
=

∑n−Nn(u)

j=0
X

(>u)
j , (2)

where Nn(u) is a random variable that has the binomial distribution with parameters n (“number of
trials”) and p = p(u) = P(|X1| ≤ u) = F (u)−F (−u) (probability of “success”), the random variables
X

(≤u)
1 , . . . , X

(≤u)
n are independent and have one and the same distribution function

F (≤u)(x) ≡ P(X
(≤u)
1 < x) = P

(
X1I{|X1|≤u} < x

∣∣ |X1| ≤ u
)
=

=
P(X1 < x; |X1| ≤ u)

P(|X1| ≤ u)
=


1, x > u;

F (x)− F (−u)

F (u)− F (−u)
, |x| ≤ u;

0, x < −u,

(3)

the random variables X
(>u)
1 , . . . , X

(>u)
n are independent and have one and the same distribution

function
F (>u)(x) ≡ P(X

(>u)
1 < x) = P

(
X1I{|X1|>u} < x

∣∣ |X1| > u
)
=

=
P(X1 < x; |X1| > u)

P(|X1| > u)
=



F (x)

F (−u) + 1− F (u)
, x < −u;

F (−u)

F (−u) + 1− F (u)
, |x| ≤ u;

F (−u) + F (x)− F (u)

F (−u) + 1− F (u)
, x > u.

(4)

Moreover, the random variable Nn is independent of X
(≤u)
1 , . . . , X

(≤u)
n and X

(>u)
1 , . . . , X

(>u)
n . For

definiteness, if Nn(u) = 0, then the sum S
(≤u)
n is set equal to zero and if Nn(u) = n, then the sum

S
(>u)
n is set equal to zero.

Lemma 2. Let A ∈ F, B ∈ F. Then P(AB) ≥ P(A)− P(B).
The uniform (Kolmogorov) distance between the distribution functions Fξ and Fη of random

variables ξ and η will be denoted ρ(Fξ, Fη), ρ(Fξ, Fη) = supx |Fξ(x)−Fη(x)|. The normal distribution
function with expectation a ∈ R and variance σ2 > 0 will be denoted Φa,σ(x),

Φa,σ(x) =
1

σ
√
2π

∫ x

−∞
exp

{
− (z − a)2

2σ2

}
dz = Φ0,1

(x− a

σ

)
= Φ0,σ(x− a), x ∈ R.

Lemma 3. For any a ∈ R, σ > 0, b ∈ R

ρ(Φa+b, σ, Φa, σ) = 2Φ0,σ

( |b|
2

)
− 1.

Lemma 4. For n ∈ N let ξ1, . . . , ξn be random variables, a1, . . . , an be positive numbers such that
a1 + . . .+ an = 1. Then for any x > 0

P
(∣∣∣∑n

j=1
ξj

∣∣∣ ≥ x
)
≤

∑n

j=1
P(|ξj| ≥ ajx).
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If, in addition, the random variables ξ1, . . . , ξn are identically distributed, then

P
(∣∣∣∑n

j=1
ξj

∣∣∣ ≥ x
)
≤ nP

(
|ξ1| ≥ x

n

)
.

Lemma 5. For n ∈ N let ξ1, . . . , ξn be random variables such that E|ξj|δ < ∞ for some δ > 0,
j = 1, . . . , n. Denote θn = ξ1 + . . .+ ξn.
(i) If 0 < δ ≤ 1, then

E|θn|δ ≤
∑n

j=1
E|ξj|δ.

(ii) If 1 ≤ δ ≤ 2, the random variables ξ1, . . . , ξn are independent and Eξj = 0, j = 1, . . . , n, then

E|θn|δ ≤
(
2− 1

n

)∑n

j=1
E|ξj|δ.

Now turn to main results. Consider the upper bound for the uniform distance between the
distribution of the normalized sum

S∗
n =

1√
n

∑n

j=1
Xj

and the normal law with some expectation a ∈ R and variance σ2 > 0. The choice of concrete values
of a and σ2 will be discussed later.

From what has been said it follows that

S∗
n

d
=

S
(≤u)
n√
n

+
S
(>u)
n√
n

.

For brevity and convenience, we will use the notation

ζn =
S
(≤u)
n√
n

, ηn =
S
(>u)
n√
n

.

Theorem 1. Let u > 0 be arbitrary. Then for any a ∈ R and σ > 0 we have

ρ(Fζn+ηn , Φa, σ) ≤ ρ(Fζn , Φa, σ) + n
(
F (−u) + 1− F (u)

)
. (5)

The proof of this result is based on Lemmas 1-4.
Theorem 1 can be easily extended to the case of non-identically distributed summands.
In practice, the values of the parameters a and σ can be chosen by the following reasoning. It is

easy to verify (say, by the consideration of characteristic functions) that

S(≤u)
n

d
=

∑n

j=1
X̃

(≤u)
j ,

where X̃
(≤u)
1 , . . . , X̃

(≤u)
n are independent identically distributed random variables,

X̃
(≤u)
j =

X
(≤u)
j with probability F (u)− F (−u);

0 with probability F (−u) + 1− F (u).

Then in accordance with (3), the parameter a can be defined as

a = a(u) = nEX̃
(≤u)
1 = n[F (u)− F (−u)]EX

(≤u)
1 ,
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and the parameter σ2 can be defined as

σ2 = σ2(u) = DX̃
(≤u)
1 = [F (u)− F (−u)]DX

(≤u)
1 + [F (−u) + 1− F (u)]

(
EX

(≤u)
1

)2
.

With these values of a and σ the first term on the right-hand side of (5) will tend to zero by the
central limit theorem as n → ∞, and can be estimated by the standard techniques, say, by the
Berry–Esseen inequality for binomial random sums, see [5, 4].

As regards the second term on the right-hand side of (5), with large u, p = F (u) − F (−u)
close to one and moderate (but large enough) n the term ηn may be small due to that the sum
S
(>u)
n contains very few summands. Moreover, in the case of light tails, putting u = un so that

n[F (−u) + 1− F (un)] → 0 as n → ∞, it is possible to make sure that the right-hand side of (5) can
be made arbitrarily small by the choice of arbitrarily large n so that the limit distribution for the
normalized sum S∗

n will be normal, see the details in Section 4.
Under some additional conditions, at the expense of introducing additional parameter, the

dependence of the second term of the bound given in Theorem 1 on n can be made better.
For c ∈ (0, 2] let h(c) = I(1,2](c).
Theorem 2. Assume that the distribution function F (x) belongs to the domain of attraction of

a stable law with characteristic exponent α ∈ (0, 2). If, moreover, α ≥ 1, then additionally assume
that F is symmetric (that is, F (−x) = 1−F (x) for x > 0). Then for any u > 0 ϵ > 0 and δ ∈ (0, α)
we have

ρ(Fζn+ηn , Φa, σ) ≤ ρ(Fζn , Φa, σ)+
[
2Φ0,σ

(
ϵ
2

)
− 1

]
+2h(δ)ϵ−δn1−δ/2

(
F (−u)+ 1−F (u)

)
E
∣∣X(>u)

1

∣∣δ. (14)

The proof is based on Theorem 1 and Lemma 5.
We see that in (14) the exponent of n is less than that in (5). However, in (14) an additional

parameter ϵ appeared. The second term on the right-hand side of (14) can be made arbitrarily small
by the appropriate choice of ϵ. With n and ϵ fixed, the third term on the right-hand side of (14) can
be made arbitrarily small by the choice of u large enough.

Actually Theorems 1 and 2 are simple variants of a so-called pre-limit theorem, see [2].
Now consider the problem of determination of n0 such that for n growing from 1 to n0 the distance

ρ(Fζn+ηn , Φa,σ) decreases and for n > n0 this distance increases. Assume that the first summand on
the right-hand side of (5) with a = a(u) and σ2 = σ2(u) is estimated by the Berry–Esseen inequality
with some γ ∈ (0, 1]:

ρ(Fζn , Φa(u),σ(u)) ≤
C(γ)L̃

(≤u)
2+γ

nγ/2
, (6)

where L̃
(≤u)
2+γ is the Lyapunov fraction of order 2 + γ,

L̃
(≤u)
2+γ =

E
∣∣X̃(≤u)

1 − EX̃
(≤u)
1

∣∣2+γ(
DX̃

(≤u)
1

)1+γ/2
,

C(γ) > 0 is the absolute constant, for example, C(1) ≤ 0.4690 [7]. It is easy to verify that if c > 0,
d > 0, then

argmin
z>0

( c

zγ/2
+ dz

)
=

(γc
2d

) 2
2+γ

.

Putting z = n, c = C(γ)L̃
(≤u)
2+γ , d = F (−u) + 1−F (u), we see that the minimum of the upper bound

for ρ(Fζn+ηn , Φa(u),σ(u)) is attained either at nγ which is the integer part of

mγ =

[
γC(γ)L̃

(≤u)
2+γ

2
(
F (−u) + 1− F (u)

)] 2
2+γ

,
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or at nγ + 1.
Substituting (6) with n = nγ in (5) we arrive at the following result.
Theorem 3. For any u > 0, γ ∈ (0, 1]

min
n

ρ(Fζn+ηn ,Φa(u),σ(u)) ≤ (2 + γ) ·
[
C(γ)L̃

(≤u)
2+γ

2γ/2γ

] 2
2+γ

·
(
F (−u) + 1− F (u)

) γ
2+γ .

If E|X1|2+γ < ∞, then

lim
u→∞

L̃
(≤u)
2+γ = L2+γ ≡ E|X1 − EX1|2+γ

(DX1)1+γ/2
< ∞

so that, according to Theorem 3,

lim
u→∞

min
n

ρ(Fζn+ηn ,Φa(u),σ(u)) = 0.

In the case γ = 0, instead of (6) the bounds obtained in [4] can be used to obtain results similar
to Theorem 3.
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