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1. Results. The subject of this study is upper and lower bounds for proba-

bilities of the type P
( n∑
i=1

Xi ≥ nx
)
, where X1, . . . , Xn are independent iden-

tically distributed Bernoulli random variables. In other words, we estimate
tail probabilities for the binomial distribution. To this end we use the Poisson
approximation.

In what follows, we use the next notations: F is the distribution function
of the Bernoulli random variable with parameter p, 0 < p ≤ 1

2
, Fn,p = F ∗n

the n-fold convolution of F . We assume x to satisfy the following condition,

0 < p < x < 1. (1)

Denote by Πλ(t) the distribution function of Poisson law with a parameter

λ > 0, πλ(j) = λj

j!
e−λ. If the variable x approaches 0, it is natural to take

Πλ with λ = np as the approximating distribution for Fn,p. Just this distribu-
tion is used in Theorem 2. But first we need another approximating Poisson
distribution with the mean λ1 = λ1(n, p, x) = np(1−x)

1−p , depending not only

on the parameters n and p, but on the variable x from (1). We shall call this
distribution by the variable Poisson distribution.

Let us formulate the first statement about the connection between the
behaviors of tails 1− Fn,p(nx) and 1−Πλ1(nx). First introduce the function

A(x, n, p) =
(

1−x
q

)−n
e
−n(x−p)

q . Hereinafter q = 1− p. We have

A(x, n, p) =
(

1− x− p
q

)−n
e
−n(x−p)

q = e
−n
[

ln
(

1− x−p
q

)
+ x−p

q

]
= e−n[ln(1−u)+u],

where u = x−p
q

. Since
(
− ln(1 − u) − u

)
=
∑∞
k=2

uk

k
=: Λ2(u), the following

equality is true,

A(x, n, p) = enΛ2(u).

Note that the series Λ2(u) converges since by condition (1), we have 0<x−p
q
<1.

Let 0 < t < 1. We will need the function H(t, p) = t ln t
p

+(1−t) ln 1−t
1−p , the

so-called relative entropy or Kullback – Leibler distance between two two-point
distributions (t, 1− t) and (p, 1− p) concentrated at the same pair of points.
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Proposition. If condition (1) is fulfilled, then

1− Fn,p(nx) =
[
1−Πλ1(nx)

]
A(x, n, p) +R1 =

[
1−Πλ1(nx)

]
enΛ2(u) +R1,

where

|R1| ≤ 2e−nH(x,p) max
y≥nx

∣∣∣Fn,x(y)−Πnx(y)
∣∣∣ ≤ 2xe−nH(x,p). (2)

Remark that the second inequality in (2) follows from Barbour and Hall [1].
Indeed, let X1, . . . , Xn be independent Bernoulli random variables. We denote

Sn =
n∑
j=1

Xj , FSn the distribution of the sum Sn, pj = P(Xj = 1), λ =
n∑
j=1

pj ,

Πλ is the Poisson distribution with parameter λ. In Barbour and Hall [1], the
following estimate for the total variation distance dTV (FSn ,Πλ) between FSn
and Πλ is obtained.

Theorem (Barbour and Hall [1, Theorem 1]). The following inequality is
valid,

dTV (FSn ,Πλ) ≤ (1− e−λ)
1

λ

n∑
j=1

p2
j . (3)

In the particular case when

p1 = p2 = . . . = pn = p, (4)

we have λ = np. Then it follows from (3) that dTV (FSn ,Πλ) ≤ (1 − e−λ) p,
whence

dTV (FSn ,Πλ) ≤ p. (5)

In the case (4) we will use the notation

dn,p = dK(FSn ,Πλ),

where dK(FSn ,Πλ) is the Kolmogorov distance between the distributions FSn
and Πλ. Since dn,p ≤ dTV (FSn ,Πλ), it follows from (5) that

dn,p ≤ p. (6)

Inequality (6) with p = x entails the second inequality in (2).
The following theorem gives one more form of the dependence of the tails

of the binomial distribution on the tails 1−Πλ1(nx) of the variable Poisson
distribution. It is a consequence of Proposition, but by no means trivial, and
requires the proof of a number of additional statements.

Theorem 1. If condition (1) is fulfilled, then

1− Fn,p(nx) =
[
1−Πλ1(nx)

]
A(x, n, p) (1 + r1) =

=
[
1−Πλ1(nx)

]
enΛ2(u) (1 + r1(x)),
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where u = x−p
q

, |r1(x)| ≤ c1
√
nx3, c1 = 2e1/12

√
2π = 5.4489 . . . .

Let us define M(k;λ) := 1−Πλ(k)
πλ(k)

, an analogue of the Mills ratio. Using
this ratio, one can deduce the following statement from Theorem 1.

Theorem 2. If condition (1) is fulfilled, then the following equality holds,

1− Fn,p(nx)

1−Πnp(nx)
=
M(nx;λ1)

M(nx;np)
e
−nqΛ3

(
x−p
q

)
(1 + r1(x)),

where Λ3(u) =
∞∑
k=2

uk

k(k−1)
, r1(x) is the function from Theorem 1.

In turn, Theorem 2 implies the following corollary.

Corollary 1. Let condition (1) be fulfilled and c1
√
nx3 < 1. Then

1− Fn,p(nx)

1−Πnp(nx)
= e−

n(x−p)2
2

[
1 + θ

(
5.74
√
nx3 +

p

x

)]
, |θ| < 1.

2. Some conjectures. Numerical experiments that we carried out led us
to some conjectures. Our first conjecture is as follows: for every 2 ≤ k ≤ n,

max
n≥1

dn,1/k = dk,1/k.

The next conjecture concerns existence and the value of the limit of dk,1/k,
when k →∞. Calculations lead to the assumption

dk,1/k ≡ max
0≤j≤k

|Fk,1/k(j+)−Π1(j+)| = |Fk,1/k(0+)−Π1(0+)| ≡ e−1−(1−1/k)k.

It is easily seen that the sequence kd(k, 1/k) decreases and

kd(k, 1/k) = k
(
e−1 − ek ln(1−1/k)

)
= e−1k

(
1− e−

1
2k

+O(k−2)
)
→
k→∞

1

2e
.

The constant c0 in the inequality supn,p
dn,p
p
≤ c0 cannot be less

kd(k, 1/k)
∣∣
k=2

= 2(e−1 − 1
4
) = 0.2357 . . . . Moreover, we can assume that

the following equality holds,

c0 = 2(e−1 − 1/4). (7)

Note that accordingly to Zacharovas and Hwang [2, P. 113] the inequality
dK(Fn,Πλ) < 0.36

λ

∑n
j=1 p

2
j was obtained in Daley and Vere-Jones [3] (al-

though we did not find this result in [3]). This means that in the case of
independent identically distributed Bernoulli random variables the following
bound holds, c0 ≤ 0.36.

If the equality (7) was proved, then it would be an improvement of the
inequality c0 ≤ 0.36. Moreover, then one can write dn,p ≤ 2(e−1 − 1/4)p
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instead of (6). And this, in turn, would lead to more accurate estimates in
Proposition, Theorems 1, 2 and Corollary 1 (since the constants in them would
become smaller).
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