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Human brain is one of the most complex structures scientists have ever
studied. The amount of knowledge about brain functioning dramatically in-
creases from year to year, but there are still many discoveries to be made in
this field. This thesis gives a brief overview of several statistical approaches
which were used to analyze magnetoenchephalographic (MEG) data. MEG is
noninvasive functional neuroimaging technique which allows to record multi-
channel signals of brain’s magnetic field variations near the head of person
doing some experiment. MEG signals coupled with some auxiliary data (fMRI
scans, actogramms, miograms, etc.) can be used not only in scientific domain
(for neurophysiological hypothesis testing), but for medical applications as
well (MEG is widely used for epileptic regions detection). More information
about MEG can be found in Hamalainen [1] and Zakharova, Nikiforov, Gon-
charenko [2].

Typical MEG data analysis workflow can be divided in following steps:

• Preprocessing (noise cancellation, bad channels detection, MEG–MRI
co–registration, etc.)

• Data transform (region of interest selection, time frequency transforms,
signal segmentation with trials detection, etc.)

• Inverse problem solving (signal to source space transform)

• Statistical inference (condition contrasts, multi hypothesis testing with
some correction procedure)

Next chapters of this paper describe how statistical techniques can help to
enhance some of these steps.

Improved noise model. MEG sensors are very sensitive devices, so it is
very important to clear the data from noisy components. MEG setup allows
to record signals without the subject inside MEG–chamber (i. e. before the
experiment start). These signals are called ”empty room” records and contain
environmental noise of MEG device and surrounding. It is very important data
for fitting noise distribution, which often assumed to be Multivariate Gaus-
sian. Our experiments with real ”empty room” recordings showed that this
assumption in general does not hold. Better model for this noise distribution
is finite Gaussian mixture, see Fig. 1.
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Figure 1: One channel of MEG–record fitted to Gaussian mixture

Such paradigm change in noise distribution allows building more flexible
processing algorithms from one side (ordinary Gaussian noise will be one of the
cases of such general model), but some essential properties of noise distribution
might not held anymore, which could be critical for some applications.

It was established in Goncharenko and Zakharova [3] that some well–known
properties of transformations of Gaussian mixtures have similarities with or-
dinal Gaussian distribution, see following sets of theorems.

Theorem 1. If ξ has a Gaussian location scale mixture distribution with
density
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then η = exp(ξ) is location scale log–Normal mixture with density
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Opposite result is also true. If η has a location scale log–Normal mixture dis-
tribution, then ξ = ln η is a location scale Gaussian mixture with respect to
same probability measure Q.

Theorem 2. If ξ has a Gaussian scale mixture distribution, then ξ2 is a
Gamma scale mixture distribution with respect to same probability measure Q.
Density of ξ2 is following
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But the next theorem shows important difference in behavior.

Theorem 3. Zero correlation of elements of vector distributed according to
Multivariate Gaussian mixture does not imply independence of these elements.
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MEG–Inverse. In order to localize activity sources within the brain it
is required to solve so-called MEG–Inverse problem. There are several differ-
ent approaches for mathematical formalization of this task. All of them use
quasi–static approximation of Maxwell equations introducing concept of ”cur-
rent dipole”, which represent the source of electromagnetic activity. There are
two main paradigms to formulate inverse problem: ”distributive” and ”para-
metric”.

With distributive approach finding of inverse operator is equal to solving
ill–posed system of linear equations.

Y = LΘ + E,

where Y ∈ Rn — measured data, L ∈ Rn×k — matrix of Biot–Savart–
Laplace operator, Θ ∈ Rk — unknown magnitudes of sources, E ∈ Rn —
noise, k — number of sources, n — number of MEG–sensors, k ≥ n.

Many techniques were developed for solving such problems, one of the
most popular is least squares approach (in MEG community it is often called
minimum norm estimate (MNE), keeping L2–norm in mind).

||E||2 = ||Y − LΘ||2 → min
Θ
.

Solution in general case provided by following formula for weighted least
squares estimator (also called Eitken’s estimator).

Θ̂ = (L>C−1L)−1L>C−1Y,

here C is covariance matrix for noise E.
It is well–known that for Gaussian noise such general least squares esti-

mate is valid and also is a best linear unbiased estimator. This result requires
covariance matrix to be positively defined. Following theorem establishes the
fact that for Gaussian mixtures this property is still valid.

Theorem 4. Consider random variable E having Multivariate Compound
Gaussian distribution with density

h(~x) =

∫
Y

fy(~x; ~µy,Σy)Q(dy),

where fy(~x; ~µy,Σy) — density of Multivariate Gaussian distribution with mean
~µy and covariance matrix Σy.

Then covariance matrix of E is positively defined if any of covariance ma-
trices Σy is positively defined.

Another formalization of the MEG–Inverse problem operates in terms of
sources with unknown parameters.

Yt =

Nd∑
i=1

L(Rit)Q
i
t + εt,
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where Rit and Qit — position and dipole moment of i-th source in time t.
Here number of sources Nd considered unknown.

In such setup it is still ill–posed problem as was discovered by Helmholtz
in 1853, so no closed form solution for general case exist. But there is a special
case with single source where such solution can be derived. Such case can be
considered as a model for epileptic brain activity. In most cases it is possible to
treat epileptic source as the only activity source, because magnitude of other
sources is much lower.

Let’s consider spheroid head model. Solution for single source within such
model was derived in Zakharova [4]. It lies in depth of rQ between extremum
points (corresponding to the maximum and minimum value of the radial com-
ponent of the magnetic field B) on surface of sphere, and θm is an angle
between source and main axis of sphere.

rQ = r
3− cos2 θm −

√
9− 10 cos2 θm + cos4 θm
2 cos θm

.

The following theorem states that rQ is actually biased estimator with
respect to small deviations in θm.

Theorem 5. If θ̂ = θm + ε, then estimator rQ has bias o(Dε).
Stability of such approach was tested in numerical simulation made in

Karpov and Zakharova [5].
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