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We study extremal behavior of waiting times and queue sizes in queueing
systems with mixture service times.

Let {Xn, n ≥ 1} be a sequence of independent identically distributed
(i.i.d) random variables (r.v.’s) with distribution function (d.f.) F . We define
Mn = max(X1, . . . , Xn). It is obviously, that for d.f. of Mn the following
equality holds:

P(Mn < x) = Fn(x).

It’s known that [7] if there exist the sequences an > 0, bn, n ≥ 1 such,
that for non-degenerate distribution G the following relation

P(an(Mn − bn) ≤ x)→ G(x), n→∞, (1)

holds, then d.f. F belongs to the maximum domain of attraction of d.f. G, F ∈
MDA(G). Distributions G satisfying (1) are called extreme value distributions
and have the following general form [3]:

P (X < x) = H(x) =

exp
(
−(1 + η · x− νσ )−1/η

)
η 6= 0;

exp
(
−exp(− x− ν

σ )
)

η = 0.
(2)

where 1 + η · x− νσ > 0

For η > 0 we get Frechet distribution, if η < 0 Weibull distribution, if
η = 0 Gunbel distribution.

If there exists sequence un = un(x) such that nF (un)→ τ as n→∞, then

P(Mn ≤ un(x))→ e−τ(x), as n→∞, 0 < τ(x) <∞, (3)

and conversely [7]. It’s clear that τ(x) = e−x for Gumbel distribution,
τ(x) = x−η for Frechet distribution and τ(x) = (−x)η for Weibull distri-
bution. The linear normalised sequence un(x) = x/an + bn is easy to find for
some distributions.

In the case of dependent strictly stationary sequences additional condi-
tions D(un), D′(un) on mixing of r.v.’s (see [7]) ensure asymptotic extremal
behaviour and relation (3) turns into

P(Mn ≤ un(x))→ e−θτ(x), as n→∞, 0 < τ(x) <∞, (4)
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where θ ∈ [0, 1] is called extremal index of {Xn}. While for independent se-
quence {X̂n} associated with {Xn} (X̂n are independent r.v.’s with the same
d.f. F ) P(Mn ≤ un(x))→ e−τ(x), as n→∞, where M̂n = max(X̂1, . . . , X̂n).

To estimate the extremal index θ block method can be used. Notice that
(4) together with nF (un)→ τ as n→∞ imply

θ = lim
n→∞

P(Mn ≤ un)

n logF (un)
. (5)

Now we assume that n = m ·h, We divide sequence X1, . . . , XN into m blocks
of size h. For each block the maximum should be calculated,

Mn,k = max(X(i−1)h+1, . . . , Xih), i = 1, . . . ,m.

Denote N(un) = #(i ≤ n,Xi > un) – the number of exceedances of un by
X1, . . . , Xn and m(un) = #(k ≤ n,Mn,k > un) – the number of blocks with
one or more exceedances, then

θ̂ =
1

h
·

log

(
1− m(un)

m

)
log

(
1− N(un)

n

) (6)

is the estimate of extremal index θ [3].
Now we extend results of extreme value theory to mixture distributions. Let

X has m-component (positive) mixture distribution, in the following form [10]

FX(x) = p1FZ1(x) + · · ·+ pmFZm(x),

m∑
k=1

pk = 1, pk ≥ 0, (7)

where components of mixture Zk has d.f. FZk . The following relation gives the
limiting distribution of maximum of m-component mixture distribution under
linear normalization [1]. Let X1, . . . , Xn be i.i.d. r.v.’s with common d.f. F (x)
in the form (7) and Mn = max(X1, . . . , Xn). Then

P(Mn ≤ un(x)) = Fn(un(x))→
m∏
k=1

(Hk(x))pk as n→∞ (8)

if and only if
FZk (un(x))→ Hk(x) as n→∞,

where un(x) -linear normalized sequence and Hk(x) are non-degenerate d.f.’s.
In this work we estimate extremal index of waiting times and queue size

processes in the queueing systems with mixture service times (7). The estima-
tion is based on regenerative simulation [8] and relation (6).
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