On characteristic function estimation for weighted sums of random vectors

S. A. Ayvazyan¹

¹Moscow State University, Moscow, Russia, ayvazyansky@yandex.ru

Let X, X_1, X_2, \ldots, X_n be a sequence of independent identically distributed random variables with zero mean, unit variance and finite third absolute moment. It follows from the Berry-Esseen inequality

$$\sup_{x \in R} |P(\frac{1}{\sqrt{n}}\sum_{j=1}^n X_j \le x) - \Phi(x)| \le C \frac{\mathbb{E}|X|^3}{\sqrt{n}},$$

that the rate of convergence of the normalized sum to the standard normal distribution is of order $O(\frac{1}{\sqrt{n}})$. However, it was shown by Klartag and Sodin [1], that if we consider weighted sums of random variables with finite fourth moment

$$\sum_{j=1}^{n} \theta_j X_j,$$

where $\theta = (\theta_1, \theta_2, \dots, \theta_n) \in Q = \{\theta_1, \theta_2, \dots, \theta_n : \sum_{j=1}^n \theta_j^2 = 1\}$, then the order of the convergence rate can be significantly improved for most weights coefficients. It was shown that

$$\mathbb{E}_{\theta} \sup_{x \in R} |P(\sum_{j=1}^{n} \theta_j X_j \le x) - \Phi(x)| \le C \frac{\mathbb{E}X^4}{n}$$

In order to generalize this result to the multidimensional case for all Borel convex sets, we follow Bhattacharya and Rao Ranga [2] and make use of truncated random vectors. Define Y_j and Z_j as

$$Y_j = X_j \mathbb{1}_X (\|\theta_j X_j\| \le 1),$$
$$Z_j = Y_j - \mathbb{E}Y_j,$$

for j = 1, ..., n, where 1_X is the indicator function. And also define characteristic function of the random vector Z_j as follows

$$\varphi_j(t) = \mathbb{E} \exp(itZ_j), \ j = 1, \dots, n.$$

Based on the approaches of Klartag and Sodin [1] and the technique of Bhattacharya and Rao Ranga [2], we proved the following Lemma

© S. A. Ayvazyan, 2021

Lemma 1. Let X_1, X_2, \ldots, X_n be independent random vectors of dimension k with zero mean $\mathbb{E}X_j = \overline{0}$, unit covariance matrix $cov(X_j) = I$ and finite fourth absolute moment $\delta_j^4 = \mathbb{E}||X_j||^4$ for $j = 1, \ldots, n$. Then there exist a subset $\Im \subseteq Q$ with normalized Lebesgue measure $\lambda(\Im) \ge 1 - C_1(\alpha, k) \exp(-c_1 \frac{n}{\delta^4})$ such that for any $\theta \in \Im$ with $\delta_{\theta}^4 \le \frac{1}{8k}$ and for any vector α with integer non-negative components, $|\alpha| \le k + 1$, one has

$$\int_{\|t\| \le \frac{n}{\delta^4}} \Big| D^{\alpha} (\prod_{j=1}^n \varphi_j(\theta_j t) - \phi_{0,V})(t) \Big| dt \le C(k,\alpha) \Big(\delta_{\theta}^4 + \frac{\delta^4}{n} + \sum_{|\nu|=3} \Big| \sum_{j=1}^n \theta_j^3 \mu_{\nu} \Big| \Big),$$

where $\delta_{\theta}^{4} = \sum_{j=1}^{n} \theta_{j}^{4} \delta_{j}^{4}$, $\delta^{4} = \frac{1}{n} \sum_{j=1}^{n} \delta_{j}^{4}$, $\mu_{\nu} = \mathbb{E}Z_{j}^{\nu}$, $V = \sum_{j=1}^{n} \theta_{j}^{2} cov(Z_{j})$, $\phi_{0,V}$ is the characteristic functions of normal random vector with zero mean and covariance matrix V and D^{a} is a differential operator.

References

- B. Klartag, S. Sodin, Variations on the Berry Esseen theorem, *Theory* of Probability and its Applications, 56:3 (2011) 514-533.
- R. Bhattacharya, R. Rao Ranga, Normal Approximation and Asymptotic Expansions, New York, Wiley, 1976.