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In this talk we address the problem of instability detection of a queueing
system modelled using a continuous-time Markov chain. As a theoretical base,
we use the results of Mandjes et al. [1]. Below we briefly explain these results.

Consider a collection of parameter-dependent queuing models {Xλ
k }k≥0 in

the form of the discrete-time Markov chains living in the state X and depending
on some internal (real, constant) parameter, say, input or service rate, defined
in a finite set λ ∈ L. The task is to find the set of model instability L ⊂ L

by obtaining its representative, λ∗ ∈ L. The instability is checked using the
monotone Lyapunov function f : X → [0,∞) is used. It is assumed that f is
unbounded, that is,

lim inf
|x|→∞

f(x) =∞,

and its increments are (uniformly) bounded by some constant φ:

|f(Xλ
k+1)− f(Xλ

k )| ≤ φ, k ≥ 0.

In the queueing environment, f may be e.g. the queue size of the model.
To obtain λ∗, a modified simulated annealing algorithm is adopted. A se-

quence {λi}i≥1 of parameter values is constructed in such a way to maximize
the system instability (the drift of Lyapunov function for the model with the
given parameter). As such, the system trajectory is a chain of connected tra-
jectories of finite length obtained by finite simulation runs with corresponding
parameter values. The trajectory is built up in iterations of the algorithm. At
kth iteration the initial value of the chain is taken as Yk−1, with some (ran-
dom) Y0. Then two independent trajectories of the Markov chain are sampled
for a number of steps τ(Yk−1), where τ is a linear function, using the (new)
randomly sampled from L parameter value λ and the old value λk−1. Finally,
the new state, Yk = Xλ

τ(Yk−1)
(Yk−1) and the new parameter value, λk = λ are

selected with acceptance probability

exp
(
ηmin

[
f(Xλ

τ(Yk−1)
(Yk−1))− f(X

λk−1

τ(Yk−1)
(Yk−1)), 0

])
,

where η is a small positive constant (in the notation, the dependence on the
initial value of the chain is stressed).

Based on the trajectory obtained, a closed family of random variables
Z(w), which stochastically majorities the increment f(Yk) at the kth step,
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is constructed. A new Markov chain, Wk, k ∈ Z+, is built using a stochastic
recursion:

Wk = Wk−1 + Z(Wk−1), W0 = 0.

Intuitively, such a sequence describes the “largest possible value” for the Lya-
punov function increment given the system is stable for all the parameter
values in L. Overshooting this boundary, in stochastic sense, is likely only for
non-stationary systems. More precisely, if q

(α)
k is the upper quantile of level α

for the random variable Wk, and f(Yk) > q
(α)
k , then we accept the hypothesis

of non-stationarity of the original Markov chain. Otherwise, we assume that
the data are insufficient to draw a conclusion about the system stability.

The following distribution is used to build the stochastic recursion for
{Wk}k≥0:

P (Z(w) > z) =

min

[
1, e
− (z−α1(w))2

2α2(w) + n(w)e
− (z−α3(w))2

2α4(w)

]
, if z > 0,

1, otherwise,

where:

α1(w) = σφ− σn(w)δ, α2(w) = (φ+ δ)2σ2n(w),
α3(w) = σφ− w + κ, α4(w) = φ2σ2n(w).

In these formulas:

• τ(w) is a simulation time;

• n(w) is the smallest integer such that σn(w) > τ(w);

• κ is a lower bound for the modulus of the initial state of the chain;

• σ is a lower bound for the number of steps;

• δ is a negative drift that a process must demonstrate to be stationary.

In our talk we demonstrate an application of this method to the task of
multiclass multiserver queueing system stability region detection.
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