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The main aim of the present paper is to demonstrate the importance of
structural stability for financial modelling, in particular, discuss its relation to
the continuity and approximation properties of superhedging prices. The struc-
tural stability is the fundamental property of a model, which means that the
qualitative behaviour of the model is unaffected by small (in a certain sense)
perturbations of its dynamics. The term “structural stability” is borrowed
from dynamical systems theory. Structurally stable systems were introduced
in 1937 by Andronov and Pontryagin [1] under the name “systèmes grossiers,”
or coarse systems. From an economic point of view, such a qualitative be-
haviour of the model of the financial market is to admit no “arbitrage”, in
some sense to be made precise.

Literature overview. The idea of stability of no arbitrage property un-
der some perturbation of the model is, of course, present in the literature.
We restrict ourselves to mention only few related papers. Let us start with
Schachermayer [2], where a “robust no-arbitrage condition” was introduced
in the case of market friction (proportional transaction costs). The economic
meaning of this notion is that there is still room for the broker to offer some
discount in quoting bid and ask prices without creating an arbitrage possibility.
There are also ad hoc definitions of robust no-arbitrage property (in the frame-
work of a particular model) e.g. in Bayraktar, Zhang and Zhou [3], considering
the case with non-tradable options that are quoted with bid-ask spreads. In
this set-up, the robust no-arbitrage property turns out to be equivalent to no-
arbitrage under the additional assumption that hedging options with non-zero
spread are non-redundant. Sometimes such kind of properties are used implic-
itly, as in Hou and Ob lój [4], considering a continuous time model of financial
market with primary assets, options that are non-tradable except initial time
moment and continuously traded European options. The general duality re-
sults of the paper exploit an assuption, concerning these options, ensuring
that their prices are not “on the boundary of the no-arbitrage region”, i.e.,
calibrated martingale measures exist under arbitrarily small perturbations of
the initial prices. For the frictionless market a simple, but nice result is pre-
sented in Ostrovski [5], where it is shown that for non-redundant one-step
model no arbitrage property is preserved under sufficiently small perturbation
of the initial probability in the total variation metric. Thus, depending on the
context, the structural stability can be formalised in different ways.

We propose a formalisation of structural stability in the framework of a
Guaranteed Deterministic Approach (GDA), developed in a series of papers
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by the author. The main premise of GDA is based on a specific assumption
concerning a priori information regarding price movements. The corresponding
market model formalise the “uncertainty” of price dynamics with discrete time
and can be considered as purely deterministic: the initial problem setting in
the GDA framework does not use any probability or family of probabilities,
see Smirnov [6].

Concerning the superheghing problem within the GDA framework, we
should stress that we adopt an alternative interpretation to the common ro-
bust approach to pricing of contingent liabilities. Our interpretation is game-
theoretic: we deal with a deterministic dynamic two-player zero-sum game of
“hedger” against “market.”1 A family of probabilities appears as a secondary
notion, thanks to the introduction of mixed strategies of the “market”2; this
this makes it possible to use the mathematical techniques based on the game
equilibrium3 instead of the usual duality method.

Formally, from the contemporary point of view, the guaranteed determin-
istic approach to the superhedging problem can be classified as a specific path-
wise (or pointwise) approach addressing uncertainty in market modelling by
defining a set of deterministic market scenarios , a result of agents beliefs. Or
it can be formally described in terms “quasi-sure” approach4, by the choice
of a collection of probabilistic models (possible priors) for the market. We
share an idea, suggested in unpublished work of L. Carassus and T. Varioglu
about 15 years ago and finally published in Carassus and Vargiolu [12]: in
order to get a meaningful theory, it is reasonable to assume the boundedness
of price increments. One of the first publications to develop a kind of GDA is
an article published in 1998 by V. Kolokoltsov5, see Kolokoltsov [13]. To the
best of our knowledge, this was the first work to explicitly articulate this ap-
proach to pricing and hedging contingent claims. The GDA is closely related
to a class of market models called interval models in Bernhard, Engwerda,
Roorda, Schumacher, Kolokoltsov, Saint-Pierre and Aubin [14], especially to
the ideas and results of Kolokoltsov published in Chapters 11–14 of this book,
including independent discovery of the game-theoretic interpretation of risk-
neutral probabilities under the assumption of no trading constraints; we find
this interpretation to be quite important from an economic point of view.

Financial market model. Let us describe shortly a financial market

1A related formulation of the upper hedging price based on the game-theoretic proba-
bility is present in Matsuda and Takemura [7].

2However, this material (concerning the corresponding mixed strategies) is not needed
for the present paper; interested readers can refer, for example, to Smirnov [8].

3In particular, we use our result in Smirnov [9].
4We refer to Bouchard and Nutz [10], and to Burzoni, Frittelli, Hou, Maggis, and

Ob lój [11] for these two robust modelling approaches and for detailed review of large
literature focusing on robust approach to mathematical finance.

5The guaranteed deterministic approach was developed by us in late 90-s (although
at that period we were not aware of Kolokoltsov’s paper), but published (primarily in
Russian) only in the last three years, together with some recent new results.
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model in the GDA framework. Consider discounted prices of n risky assets;
without loss of generality, we can suppose that a risk-free asset has a fixed
price equal to one, and so in what follows we call “discounted prices” simply
“prices.” Let Xt be the price vector at time t and ∆Xt = Xt −Xt−1 be the
vector of price increments. The above-mentioned assumption about a priori
information describing price movements is as follows: the price increments
∆Xt lie in a priori given (non-void) closed set sets6 Kt(·) ⊆ Rn, t = 1, . . . , N .
Denote by Bt the set of possible trajectories (or paths) of asset prices in the
time interval [0, t], i.e.

Bt = {(x0, . . . , xt) : x0 ∈ K0,∆x1 ∈ K1(x0), . . . ,∆xt ∈ Kt(x0, . . . , xt−1)}.

We suppose that there are trading constraints, concerning only risky assets.
These are described by a priori given sets Dt(·) ⊆ Rn, t = 1, . . . , N , depending
on price prehistory, which are assumed to be convex and such that 0 ∈ Dt(·).
An admissible hedging strategy at time step t is therefore h ∈ Dt(·).

Bellman–Isaacs equations for the superhedging problem. To ap-
ply the GDA to the described above financial market model with trading
constraints, we set the superhedging problem of a contingent claim on the
American option, based on dynamic programming principle. Let us denote
by v∗t (·) the infimum of the portfolio value at time t that guarantees, given
the price history, a choice of an appropriate hedging strategy covering current
and future liabilities due to possible payments on the American option. The
corresponding Bellman–Isaacs equations can be derived directly based on the
economic sense, by choosing at step t the “best” admissible hedging strategy
h ∈ Dt(·) ⊆ Rn for the “worst” scenario of (discounted) price increments
y ∈ Kt(·) for the given payoff functions gt(·), describing the potential payouts
on the option. Thus, we obtain the recurrence relation (see Smirnov [6]), in
fact based on dynamic programming principle, which is the starting point of
studying the superhedging problem within GDA framework and can also be
regarded as a kind of axiom: for t = N, . . . , 1

v∗t−1(x̄t−1) = gt−1(x̄t−1)∨ inf
h∈Dt(x̄t−1)

sup
y∈Kt(x̄t−1)

[
v∗t (x̄t−1, xt−1 + y)− hy

]
,

v∗N (x̄N ) = gN (x̄N ),
(1)

where x̄t−1 = (x0, . . . , xt−1) represents the price history up to the present
moment t − 1, the symbol ∨ denotes maximum, and hy = 〈h, y〉 is the
dot product of the vectors h and y. In (1), the functions v∗t and the corre-
sponding suprema and infima take values in an extended set of real numbers
R∪{−∞,+∞} = [−∞,+∞], which is the two-point compactification7 of R. In

6The dot “ · ” indicates the variables representing the price evolution. More precisely, it
indicates the prehistory x̄t−1 = (x0, . . . , xt−1) ∈ (Rn)t for Kt, and it indicates the history

x̄t = (x0, . . . , xt) ∈ (Rn)t+1 for the functions v∗t and gt introduced below.
7The neighborhoods of points −∞ and +∞ are given by [∞, a), a ∈ R and (b,+∞],

b ∈ R, respectively.
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a certain sense, this approach can be regarded as quite general: neither mea-
surability conditions nor “no arbitrage” assumptions are initially imposed. It is
convenient to assume (formally) that g0 ≡ −∞ (there are no liabilities to pay
at the initial time); gt ≥ 0 for t = 1, . . . , N in the case of an American option.8

Multivalued mappings x 7→ Kt(x) and x 7→ Dt(x), in addition to functions
x 7→ gt(x), are assumed to be defined for all x ∈ (Rn)t, t = 1, . . . , N . There-
fore, functions x 7→ v∗t (x) are defined by (1) for all x ∈ (Rn)t, t = 1, . . . , N .

Relevant “no arbitrage” notions. The different notions of “no arbi-
trage” in the framework of the deterministic market model can be relevant9

and were introduced in Smirnov [16]; in this paper the corresponding geomet-
ric criteria were obtained. For the convenience of the reader, we give several
definitions of the notions.

Definition 1. By deterministic arbitrage opportunity (DAO) at time step
t, we mean that there exists a strategy h∗ ∈ Dt(·) such that h∗y ≥ 0 for all
y ∈ Kt(·) and there exists a price movement y∗ ∈ Kt(·) such that h∗y∗ > 0.
By deterministic sure arbitrage (DSA) at time step t, we mean that there
exists a strategy h∗ ∈ Dt(·) such that h∗y > 0 for all y ∈ Kt(·). We say that
there is deterministic sure arbitrage with unlimited profit (DSAUP) at time
step t if the function h 7→ inf{hy, y ∈ Kt(·)} takes arbitrarily large values for
h ∈ Dt(·).

Using these three notions of “arbitrage”, we can define the corresponding
“no arbitrage” properties on a time interval: each “no arbitrage” property on
a time interval is tantamount to the corresponding “no arbitrage” property at
every time step of this interval for any price prehistory. So, we consider the
following “no arbitrage” properties: no deterministic arbitrage opportunity
(NDAO), no deterministic sure arbitrage (NDSA), and no deterministic sure
arbitrage with unbounded profit (NDSAUP)10.

According to our interpretation, Kt(·) reflects the agent’s beliefs about
price movements, which are naturally inexact; on the other hand, the trading
constraints are supposed to be defined exactly. As we have mentioned above,
within DSA framework we formalise uncertainty of price movement, so a rea-
sonable model should satisfy the following “uncertainty principle”11. Consider

8European or Bermudian options can be also considered using (1): if no payment is due
at a moment of time t, we formally set gt ≡ −∞.

9Two notions of arbitrage introduced below, DAO (deterministic arbitrage opportunity)
relates to “One Point Arbitrage” and in our setting is also equivalent to quasi-sure arbitrage
of Bouchard and Nutz [9], while DSA (deterministic sure arbitrage) relates to “Strong
Arbitrage”, to use the unified terminology of robust modelling in Burzoni, Frittelli, Hou,
Maggis, and Ob lój [10]. A detailed analysis of the relation between different “no-arbitrage”
notions in the framework for robust modelling of financial markets in discrete time is
presented in Ob lój and Wiesel [15].

10Note that in the case of conic trading constraints (in particular, in the case of no
trading constraints, i.e. Dt(·) ≡ Rn) NDSAUP coincide with NDSA.

11Which is not the case for the traditional model with the reference probability, where
the universe containing all states of the world is fixed (up to a set of zero measure) by
means of considering equivalent measures.
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the trading constraints Dt(·) as fixed; if there is no “arbitrage” (in a certain
sense) for the initial model with price dynamics described by Kt(·), then for
the model with price dynamics described by K̃t(·) ⊇ Kt(·) the corresponding
“no arbitrage” condition is also valid. The meaning is rather clear: if we cannot
realise “arbitrage” for initial model, then all the more we cannot realise “ar-
bitrage” for a model with more uncertainty, i. e. with less information about
price movement. Note that NDSA and NDSAUP satisfy the uncertainty prin-
ciple, whereas NDAO, in general, do not satisfy this principle and therefore can
be considered as not relevant for the GDA framework (however, NDAO can
satisfy this principle if certain additional assumptions are admitted, namely
“robustness” property, defined below).

Structural stability (robustness of “no arbitrage”). Hereinafter,
we assume that all the sets Kt(·) are bounded (hence compact), unless oth-
erwise stated. Since our interpretation appeals to a vague knowledge about
the price behaviour, we have introduced an important concept of structural
stability. In our context it is formalised as follows: a specific “no arbitrage”
property (which reflects the qualitative behaviour of a price dynamics) is un-
affected by perturbations of Kt(·) that are sufficiently small with respect to
the Pompeiu–Hausdorff metric dPH ; we call such a “no arbitrage” property
robust12 or coarse. In what follows, we consider two coarse “no arbitrage”
properties: robust no deterministic arbitrage opportunity (RNDAO) and ro-
bust no deterministic sure arbitrage with unlimited profit (RNDSAUP). More
precisely it is defined below.

Definition 2. Suppose that the initial market model satisfies the NDAO
(respectively NDSAUP) condition and consider a perturbed model with incre-
ments ∆Xt lying in compact sets K̃t(·) for t = 1, . . . , N . The robust (or coarse)
NDAO (respectively NDSAUP) property, abbreviated RNDAO (respectively
RNDSAUP), means that for any t ∈ {1, . . . , N} and any prehistory of the
prices x ∈ Bt−1, there exists εt(x) > 0 such that if dPH(K̃t(x),Kt(x)) ≤ εt(x),
then the perturbed market model still satisfies the NDAO (respectively ND-
SAUP) condition13.

The corresponding geometric criteria (in terms of convex hulls of Kt(·))
were obtained in Smirnov [16] and Smirnov [17]. Here we mention only two of
them, which are of interest in the simple but important for applications case of
no trading constraints, i. e. when Dt(·) ≡ Rn. The condition NDAO is equiv-
alent to the Jacod–Shiryaev geometric criterion:14 0 ∈ ri(conv(Kt(·))), t =
1, . . . , N , and RNDAO is equivalent to the “enhanced” Jacod–Shiryaev geo-

12We feel now that the term “robust” is overused in the literature (with different mean-
ings) and the term “coarse” would be better, but unfortunately “robust” is already used
in our papers.

13In fact, it can be weaken as follows: the convex hull of K̃t(x) need to be close

to the convex hull of Kt(x), i.e. dPH(conv(K̃t(x)), conv(Kt(x))) ≤ εt(x). Note that
dPH(conv(A), conv(B)) ≤ dPH(A,B) for compact sets A and B.

14In the probabilistic setting, this geometric criterion (understood almost surely) was
found by Jacod and Shiryaev [18].
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metric criterion15 0 ∈ int(conv(Kt(·))), t = 1, . . . , N , where conv(A) is the
convex hull of a set A, ri(A) is the relative interior of a convex set A, and
int(A) is the interior of a set A.

Continuity of pricing. We argue that the continuity property of super-
hedging price are related to the structural stability.

Theorem 1. Suppose that the robust condition of no arbitrage oppor-
tunities RNDSAUP holds, for s = 1, . . . , N , the functions of potential pay-
ments gs are continuous and multivalued mappings x̄s−1 7→ Ks(x̄s−1) are
h-continuous (continuity with respect to the Pompeiu–Hausdorff metric16).
Then, the functions v∗s , defined by (1) with Ds(·) ≡ Rn, are uniformly contin-
uous and bounded on Bs; moreover, the continuity modulus of functions v∗s
can be estimated with the help of recurrent inequalities.

This result was obtained in Smirnov [19] in the case of no trading con-
straints17; in general case Theorem 1 was obtained in Smirnov [8].

Let us introduce a related probabilistic model, assuming that there are
no trading constraints. Suppose that the initial price takes values in some
compact set F0 = K0. Denote Ft(x) = x + Kt(x), x ∈ Bt−1, t = 1, . . . , N .
Consider a family of multifunctions Ft(·), t = 1, . . . , N and a family Pt of
the stochastic kernels Pt, t = 1, . . . , N ; the measure Pt(x̄t−1, ·) is interpreted
as a conditional distribution of Xt given the price prehistory X̄t−1 = x̄t−1 ∈
Bt−1. A measure P0 is interpreted as a (marginal) distribution of X0. The
corresponding probability P can be defined using Ionescu Tulcea construction.

We say that the consistency condition (the relation between stochastic and
deterministic models) is satisfied if

supp(Pt(x, ·)) = Ft(x), x ∈ Bt−1, t = 1, . . . , N ; supp(P0) = F0. (2)

We prove in Smirnov [20] the following result.
Theorem 2. In the case of no trading constraints, under the same assump-

tions as in Theorem 1, the superhedging prices for the American option in the
usual probabilistic setting, satisfying the consistency condition (2), coincide
almost surely18 with the corresponding solutions of (1).

As a consequence, under assumptions of Theorem 2 the superhedging prices
for the usual probabilistic setting admit a continuous version.

We have noticed, that Proposition 3.7 in the Section 3.2 of Carassus, Ob lój
and Wiesel [21] about the continuity (as a function of price history) of super-
hedging price is not valid unless one of its assumptions is strengthen. Using our
terminology we can formulate the result of this proposition in equivalent form
as follows. The assumptions of Proposition 3.7 the paper mentioned above are

15Note that in general RNDSAUP does not imply int(conv(Kt(·))) 6= ∅.
16For compact-valued mappings, h-continuity is equivalent to continuity.
17Note that in this case RNDSAUP is equivalent to RNDAO.
18Under quite general assumptions GDA pricing is not less the probabilistic pricing

(almost surely) if consistency condition holds and there are simple examples where it is
strictly greater.
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the following: The initial price is assumed to be fixed, X0 = x0; the corre-
spondences Ft(·) are compact-valued and uniformly19 continuous; the payoff
function g on the European option is continuous; no quasi-sure arbitrage con-
dition20 with respect to the Pt, the set of priors at time t, which consists of
all the kernels, satisfying (2), holds for t = 1, . . . , N . The proposition in ques-
tion states that under these assumptions the quasi-sure superhedging price
Vt, t = 0, . . . , N coincides with the almost sure superhedging price, and the
functions Vt = vt(X̄t) are continuous21 for t = 1, . . . , N .

We have constructed a counterexample clarifying the origin of the mistake
in this assertion and showing, that NDAO condition is still insufficient for the
continuity of the superhedging price. Note that Proposition 3.8 in Carassus,
Ob lój and Wiesel [21] is nevertheless valid, since the condition RNDAO is
fulfilled.

Model approximation and structural stability. For the original mar-
ket model, a natural way of solving the problem approximately is to construct
a perturbed market model such that compacta describing the uncertainty of
price movement have simple structures (e.g., they could be finite sets). To
preserve the economic meaning of the solution to the problem for the per-
turbed market model (which is to have qualitative properties similar to those
of the original system), we must preserve the structural stability conditions.
If using the perturbed market model we obtain a numerical solution with the
prescribed error and such that the price increments lie in the compacta K̃t(·),
the meeting of condition RNDSAUP must be verified. To do this, we formalise
in Smirnov [22] the concept of the structural stability threshold of the model.

Definition 3. If the original model satisfies condition RNDSAUP and the
price prehistory is known, structural stability threshold pt(Kt(·)) of the model
at time t equals +∞ if condition RNDSAUP is satisfied for each perturbation
K̃t(·) of the model; otherwise, it is defined by two conditions:

a) condition RNDSAUP is satisfied for each perturbed model satisfying
inequality dPH(conv(Kt(·)), conv(K̃t(·))) < pt(Kt(·));

b) there exists a perturbed model such that
dPH(conv(Kt(·)), conv(K̃t(·))) > pt(Kt(·)) and condition RNDSAUP is
not satisfied.

An explicit expression for the structural stability threshold and its prop-
erties are obtained in Smirnov [22]. These results are helpful to estimate the
sensitivity of the solutions of (1) for an initial model, satisfying the conditions
of Theorem 1, with respect to uniformly small perturbations of compactaKt(·).
It is to stress that we do not need any kind of “smoothness” conditions (like

19The assumption of uniform continuity of multivalued mappings in Proposition 3.7 of
Carassus, Ob lój and Wiesel [21] is redundant. In fact, it is used only for the arguments
from the set of possible trajectories Bt−1, which is compact.

20In the case considered here, it is equivalent to NDAO condition, in our terminology.
21This is a verbal expression from Carassus, Ob lój and Wiesel [21]; a more correct way

to formulate it would be to say that the functions vt(·) admit a continuous version.
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semicontinuity or continuity) or even measurability for the compact-valued
mapping K̃t(·), describing the price dynamics of perturbed model.

For non-void compacta K define function r by

r(K) = min
h∈S1(0)

σK(h), (3)

where σK stands for the support function of K. If 0 ∈ int(conv(K)), the
quantity r(K) has a nice geometric interpretation as the (positive) distance
from the point 0 to the boundary of the convex hull of the set K. It turns out
that the structural stability threshold in the case of no trading constraints is
just r(Kt(·)) and if the multifunction Kt(·) is continuous then22

r∗t = inf
x∈Bt

r(Kt(x)) > 0, (4)

which can be interpreted as guaranteed (worst) structural stability threshold.
Note that the continuity modulus of functions v∗s in Theorem 1 depends on r∗t ,
defined by (4).

In the approximation result from Smirnov [23], presented below, we sup-
pose that the trading constraints Dt(·) are representable in the form of
Motzkin decomposition, introduced in Goberna, González, Mart́ınez-Legaz
and Todorov [24].

Theorem 3. Suppose that for initial model payoff functions gt(·) and
compact-valued mappings are Kt(·) are continuous, the multifunctions Dt(·)
are closed and lower semicontinuous23, and Dt(·) is Motzkin decomposable,
i. e. can be represented as Minkowski sum

Dt(·) = D1
t (·) +D2

t (·), t ∈ {1, . . . , N}, (5)

where D1
t (·) = rec(Dt(·)) is recession cone of Dt(·) and D2

t (·) is compact;
additionally, we assume that D2

t (·) can be chosen such that the multifunctions
x 7→ D2

t (x) are continuous; suppose also that24

inf
x∈Bt−1

pt(Kt(x)) = p∗t > 0 (6)

for t = 1, . . . , N . Then for the uniformly close perturbations

sup
x∈Bt

dPH(Kt(x), K̃t(x)) ≤ δ

there is a constructive estimate for the uniform approximation of the solution
of Bellman–Isaacs equations (1)

sup
x∈Bt

|v∗t (x)− ṽ∗t (x)| ≤ ψ(δ)→ 0 as δ → 0. (7)

22In fact, under this assumption the greatest lower bound below is attained.
23These assumptions about gt(·), Kt(·) and Dt(·), together with RNDSAUP (which

follows from the assumption (6) formulated below) imply the continuity of the Bellman–
Isaacs equations according Theorem 1.

24A sufficient condition for this inequality is given in Smirnov [22].
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We show that if structural stability does not hold, continuous superhedg-
ing pricing can be “fragile”: it means that uniformly small (with respect to
dPH metric) perturbations of the model’s dynamics can dramatically change
superhedging prices; it is evident when a “no arbitrage” condition is broken,
but it can be the case even if the “no arbitrage” condition is preserved. Below
we formulate a result (not yet published) concerning the “fragility” of super-
hedging prices for one-step (i.e. N = 1) deterministic price dynamics model,
when the condition NDAO holds, but RNDAO is not satisfied.

Theorem 4. Assume that that there are no trading constraints, the num-
ber of risky assets n ≥ 2, the initial deterministic model is defined by a con-
tinuous multifunction K1(·) with (non-void) compact convex values such that
NDAO holds and the set25 B∗0 = {x ∈ B0 : n − 1 ≥ dim(span(K1(·))) > 0}
is non-void26. Then there exist a continuous payoff function g1, a num-
ber β > 0 and a non-void Borel subset B∗∗0 of B∗0 , such that for every
δ > 0 there exist a perturbed model satisfying NDAO, defined by a Borel-
measurable multifunction K̃1(·) = K̃

(δ)
1 (·) with (non-void) compact convex

values from, uniformly close to initial model in the Pompeiu–Hausdorff met-
ric: sup

x
dPH(K̃1(x),K1(x)) < δ, whereas the solutions of (1), v∗t and ṽ∗t for

initial and perturbed models respectively, differs: v∗t (x) − ṽ∗t (x) ≥ β for all
x ∈ B∗∗0 .

Realistic models and structural stability. We regard as “realistic”
a stochastic model of market behaviour (a stochastic process with discrete
time describing price evolution) if the conditional distributions of the current
price depend “continuously” on the price history. This is a natural property
of market models from an economic point of view: there are no economic
grounds for discontinuity of the dependence on price prehistory. The following
is a formalisation of this property.

Definition 4. We say that a stochastic model of price evolution is realistic,
if the transition kernels Qt corresponding to the conditional probabilities of
the price Xt ∈ Rn at time t with a known history X̄t−1 = x̄t−1 ∈ (Rn)t

admit a version satisfying the Feller property, i.e. the mapping x 7→ Pt(x, ·) is
continuous27 in the weak topology on the space of probability measures. Note
that the deterministic and stochastic approaches lead to the same notions of
“no arbitrage” in terms of conv(supp(Pt(x, ·))), when the reference probability
measure is specified by means of the Ionescu Tulcea construction using Feller
transition kernels.

In the context of the deterministic approach, we propose the following
formalisation of a “realistic” model of price evolution.

Definition 5. We call a deterministic model realistic if there exist mixed

25Here span(A) stands for linear span (linear hull) of a set A ⊆ Rn.
26Hence, RNDAO is not satisfied.
27For measurability issues, see Proposition 1 in Smirnov [25].
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market strategies Pt(x, ·) representable as Feller transition kernels,28 satisfying
the consistency condition (2).

A necessary and sufficient condition for the existence of such a selector Pt
is lower semicontinuity of the multifunctions29 Ft, as shown in Smirnov [25],
Theorem 2.

In what follows, we assume that there are no trading constraints, i.e.
Dt(·) ≡ Rn. It turns out that under the assumption of structural stability,
i.e. the RNDAO condition, and some stronger assumptions about the mul-
tifunctions Kt(·), the assertion of Smirnov [25], Theorem 2, concerning the
existence of a Feller kernel selector, can be strengthened; moreover, it can be
shown in a constructive manner.

Theorem 5. If the set of initial prices K0 is convex and compact, the
values of the continuous multifunctions Kt(·) are convex compact sets, and
RNDAO holds, then there exists a stochastic model, satisfying the consistency
condition (2), such that the kernels Pt are strong Feller in the strict sense.30

It is interesting, that the module of continuity for constructed Feller kernel
(considering dependence of the probabilities on price prehistory) depend on
depends on the guaranteed (worst) structural stability threshold, given by (4),
see Smirnov [27].

The structural stability for a probabilistic model. As the 2021 ses-
sion of the International Seminar on Stability Problems for Stochastic Models
commemorates the 90th birthday of the outstanding mathematician Vladimir
Zolotarev (27.02.193–07.11.2019), founder of this seminar, we would like to
take the opportunity to mention Zolotarev’s considerable contribution to the
theory of probability metrics, see e. g. Zolotarev [28]. We show the preserva-
tion of structural stability for transitional kernel perturbations, small enough
with respect to one of the three probability metrics considered. This is one more
argument in favour of the importance of structural stability for financial mod-
elling.

For a monotone nondecreasing function f : [0,∞)→ R, we define the upper
generalised inverse by

fb−1c(y) = inf{x ∈ [0,∞) : f(x) > y} = sup{x ∈ [0,∞) : f(x) ≤ y},

which is nondecreasing right-continuous. Denote the open half-space with nor-
mal vector u by Hu = {y ∈ Rn : 〈u, y〉 > 0}, the ε-neighbourhood of the set
B by Bε = {z ∈ Rn : ρ(z,B) < ε}, where ρ is Euclidian metric on Rn and

28This can be interpreted as a smooth version of conditional distributions Xt given
prehistory X̄t−1 = x.

29Or, equivalently, lower semicontinuity of the multifunctions Kt.
30We follow the terminology of Revuz [26] Chapter 1, Definition 5.8. The kernels Pt

are iff the mapping x → Pt(x, ·) is continuous in the metric on the space of probability
measures (equipped with a σ-algebra), generated by the total variation norm on the space
of finite alternating measures.
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ρ(z,B) = infx∈B ρ(z, x). Consider three metrics31 on the space of probability
measures on32 (Rn,Bn):

dUC(Q′, Q) = sup
A∈CRn

|Q′(A)−Q(A)|,

where CRn is the class of all non-void convex subsets of Rn;

l∞(Q′, Q) = inf{ε > 0 : Q(B) ≤ Q′(Bε), Q′(B) ≤ Q(Bε) for all B ∈ B
n};

and the Prokhorov metric

dP (Q′, Q) = inf{ε > 0 : Q(B) ≤ Q′(Bε)+ε, Q′(B) ≤ Q(Bε)+ε for all B ∈ B
n}.

The following result is proved in Smirnov [30].
Theorem 6. Let Qt be the kernels of the initial model and Q̃t those of the

perturbed model. Assume that there are no trading constraints and that for
the initial model RNDAO holds (using the consistency condition (2)).

1. Then33 the perturbed model with kernels Q̃t satisfies RNDAO if it is
close to the initial one in the sense that

dUC(Q̃t(x, ·), Qt(x, ·)) < p∗t (x),

where p∗t (x) = infu∈S1(0) Qt(x,Hu) > 0.

2. Suppose that the supports of Q̃t(x, ·) and Qt(x, ·) are compact. Then the
perturbed model with kernels Q̃t satisfies RNDAO if it is close to the
initial one in the sense that34

l∞(Q̃t(x, ·), Qt(x, ·)) < r∗t (x),

where r∗t (x) = r(Kt(x)) > 0 and r is given by (3).

3. There exists a d∗t (x) ∈ (0, 1) that can be defined, given the measure
Qt(x, ·), such that the perturbed model with kernels Q̃t satisfies RNDAO
if35

dP (Q̃t(x, ·), Qt(x, ·)) < d∗t (x).

31Note that l∞ is the minimal metric with respect to the metric on the space of random
vectors defined by L∞(X′, X) = vrai max ρ(X′, X), see, e. g., (7.5.15) in Rachev, Kle-
banov, Stoyanov and Fabozzi [29]. The metric dUC is a generalisation of the Kolmogorov
metric dK defined for probabilities on the real line R. On R, these two metrics are equiv-
alent: dK ≤ dUC ≤ 2dK . Note that the metric dUC is used, for example, to estimate
the speed of convergence in the multidimensional central limit theorem, see Bentkus [30].
The Prokhorov metric dP metrises the weak topology on the space of probabilities on a
separable metric space, see Prokhorov [31].

32Here Bn stands for the Borel σ-algebra.
33In this paragraph, the supports Qt(x, ·) and Q̃t(x, ·) are not necessarily compact and

the result generalise that of Ostrovski [5]
34The RNDAO condition (for the initial model) is tantamount to r(Kt(x) > 0 for all x

and t.
35In this case also, the supports Qt(x, ·) and Q̃t(x, ·) are not necessarily compact.
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If, additionally, the supports of Qt(x, ·) are compact, then it is sufficient
to set

d∗t (x) = φ
b−1c
t,x (r(Kt(x))),

where r is given by (3),

φt,x(z) = z + ψ
b−1c
t,x (z),

and

ψt,x(u) = inf
y∈Kt(x)

Q(x, B̄u(y)).

References

1. A. A. Andronov, L. S. Pontryagin, Systèmes grossiers Dokl. Akad. Nauk
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