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Abstract

We consider a random forest with N root vertexes and not more then n non-root
vertexes defined by trajectories Galton-Watson process with Poisson distribution of
number of direct descendants which has N particles in beginner. That is a subset
of trajectories for which the number of non-root vertexes is not more n. We prove
Poisson limit theorem for the number of trees from the first K trees which contains
r non-root vertexes. The limit Poisson random variable is described.
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1 INTRODUCTION AND MAIN RESULT
Let ξ1, ξ2, . . . be independent identically distributed non-negative integer valued random
variables. We say that the random variables η1, . . . , ηN satisfy the generalized allocation
scheme of not more n particles by N cells, if there joint distribution is of the form

P{η1 = k1, . . . , ηN = kN} = P

{
ξ1 = k1, . . . , ξN = kN

∣∣∣∣∣
N∑
i=1

ξi ≤ n

}
,

for all non-negative integer numbers k1, . . . , kN such that k1 + k2, · · ·+ kN ≤ n.
The generalized allocation scheme of not more n particles by N cells was introduced

in [1]. In [1, 2] it obtained limit theorems which connected with the generalized allocation
scheme of not more n particles by N cells.

In [3, 4] it considered the set FN,n of forests with the pointed vertexes which contain
N root vertexes and n non-root vertexes. On this set it considered uniform distribution of
probabilities. For such random forests it obtained various limit theorems which connected
with values of trees and proved for different method of N, n → ∞. In [3] the same
problems was solved for Galton-Watson forests. That is random forests which generated
by subcretecal or cretical Galton-Watson process which has N particles in the beginner.
This random process desintegrates on N independent random processes which begin with
one particle. The set of all trajectories of such process is infinity. In [5] it considered
a subset of this set in which particles exist during the time of the evolution N + n. In
such subset the number of realizations of the process is finite and the distribution of
probabilities defined by the natural method.

Consider Galton-Watson process which begin from N particles and a number of right
descendants each particle has Poisson distribution with the parameter λ, 0 < λ ≤ 1.
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Observe that the subset of trajectories of such process which contains n+N edges coincieds
with FN,n. Denote by ξ1, ξ2, . . . ξN the numbers of particles which exist during the time
of the evolution in subprocesses which begin from the particle 1, . . . N , correspondingly.
Then (see [6]) ξ1, ξ2, . . . ξN are independent random variables with the distribution

pk(λ) = P{ξi = k} =
(λk)k−1

k!
e−λk, k = 1, 2 . . . , 0 < λ ≤ 1,

We will consider a subset of trajectories of the process such that ξ1 + ξ2 + · · · + ξN ≤ n.
Denote by η1, . . . , ηN the random variables which are values of trees in the forest from
this subset. Then (η1, . . . , ηN) has the distribution

P{η1 = k1, . . . , ηN = kN} = P

{
ξ1 = k1, . . . , ξN = kN

∣∣∣∣∣
N∑
i=1

ξi ≤ n

}
.

So η1, . . . , ηN is the generalizeg allocation scheme of allocation of not more n particles by
N cells.

We will study the convergence in distribution of the random variables

µr(n,K,N) =
K∑
i=1

I{ηi=r}, where 0 < K ≤ N, r = 1, 2 . . . .

to Poisson random variable. Observe that µr(n,K,N) is a number of trees from the first
K trees which contain r non-root vertexes.

The main result of the paper is the following theorem.

Theorem 1. Let r be a fixed number. Suppose K,n,N →∞ such that

Kpr(λ)→ α,

where 0 ≤ α <∞ and one of the following conditions is valid:

(A) λ3(1− λ)N →∞ and n(1− λ)3/2 −N
√

1− λ ≥ C
√
Nλ for some C < 0;

(B) (1− λ)N → ν and n ≥ CN2 for some C > 0, 0 < ν <∞.

Then we have
µr(n,K,N)

d→ π(α).

The proof of Theorem 1 founded on Poisson limit theorem for exchangeable random
variables. Recall that the random variables η′1, η′2, . . . η′K are called exchangeable if the
distribution of (η′1, η

′
2, . . . η

′
N) coincides with the distribution of (η′i1 , η

′
i2
, . . . η′iK ) fo any

permutation (i1, i2, . . . iN) of (1, 2, . . . K).
The following known elementary limit theorem will play fundamental role in our paper

( see Theorem II in [7]; we mention the Benczúr presented as lightly more general result
without proof, see Theorem 1 in [8]).
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Theorem A. Let the array of random variables η′Ki, 1 ≤ i ≤ K, K = 1, 2, . . . , be
row-wise exchangeable. Let Ai = AKri = {ω ∈ Ω : η′Ki(ω) = r}, where r is a fixed and let
SK =

∑K
i=1 IAi. Suppose that the following condition is valid.

There exists β (≤ β <∞) such that for any k = 1, 2, . . .

KkP(AK1 ∩ AK2 ∩ · · · ∩ AKk)→ βk, as K →∞. (1.1)

Then
SK

d→ π(β), as K →∞.

Distribution of µr(n,K,N) coincieds with the distribution of the random variable
µr(n,A,N) =

∑
i∈A I{ηi=r}, where A is a pointed subset of the set {1, . . . N} such that

|A| = K. So Theorem 1 we can consider as a theorem for number of trees from a pointed
set.

Limit theorems for a number of empty cells in a pointed set of cells in the schem of
allocation of distingushing particals by different cells obtained in [9]. In [10] it obtained
limit theorems for a maximal number of a tree in Galton-Watson forest with bounded
number of vertexes.

We will denote: γ is a gaussian random variable with the expectation 0 and the
variance 1, Φ is a distribution function of γ, π(α) is a poissonian random variable with
the parameter α, d

= is the equality by dstribution, d→ is the convergence by distribution.

2 Proof of Theorem 1
In order to check (1.1) we will use the following lemma.

Lemma 1. Let η1, . . . , ηN be a generalized allocation scheme of not more n particles
by N cells. Then Тогда η1, . . . , ηN are row-wise exchangeable random variables and we
have

P(A1 ∩ A2 ∩ · · · ∩ Ak) = (pr(λ))k
P{ζN−k ≤ n− kr}

P{ζN ≤ n}
, (2.1)

where Ai = Ari = {ω ∈ Ω : ηi(ω) = r}, ζl = ξ1 + ξ2 + · · ·+ ξl, l ∈ {N,N − k}.
The proof of Lemma 1 is the same as the proof of Lemma 1.2.1 from [11]. In order

to estimate the numerator and the denominator in (2.1) we will use the following lemmas
which obtained in [10] (see Lemma 6 and Lemma 9).

Lemma 2. Let (А) be valid. Then we have

ζN − N
1−λ√

Nλ
(1−λ)3

d→ γ, as N →∞.

Lemma 3. Let (B) be valid. Then we have

ζN
N2

d→ δ, as N →∞,
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where δ is a random variable with a distribution function difined by the density

g(x) =
1√

2πx3
exp

{
ν − ν2x

2
− 1

2x

}
, x > 0, g(x) = 0, x ≤ 0.

Proof of Theorem 1. Let (A) be valid. Using (2.1) we have

KkP(A1 ∩ A2 ∩ · · · ∩ Ak) = (Kpr(λ))k

P

 ζN−k−N−k
1−λ√

(N−k)λ
(1−λ)3

≤ n−kr−N−k
1−λ√

(N−k)λ
(1−λ)3


P

{
ζN− N

1−λ√
Nλ

(1−λ)3
≤ n− N

1−λ√
Nλ

(1−λ)3

} =

= (Kpr(λ))k

P

√N−k
N

ζN−k−N−k
1−λ√

(N−k)λ
(1−λ)3

≤ n− N
1−λ√
Nλ

(1−λ)3
− kr√

Nλ
(1−λ)3

+ k√
Nλ
1−λ


P

{
ζN− N

1−λ√
Nλ

(1−λ)3
≤ n− N

1−λ√
Nλ

(1−λ)3

} . (2.2)

Let 0 < ε < 1/2. Choose C1 > 0 such that Φ(C1) > 1− ε. Since

kr√
Nλ

(1−λ)3

− k√
Nλ
1−λ

→ 0,

as C ≤ n− N
1−λ√
Nλ

(1−λ)3
≤ C1, by Lemma 1 we have

P

√N−k
N

ζN−k−N−k
1−λ√

(N−k)λ
(1−λ)3

≤ n− N
1−λ√
Nλ

(1−λ)3
− kr√

Nλ
(1−λ)3

+ k√
Nλ
1−λ


P

{
ζN− N

1−λ√
Nλ

(1−λ)3
≤ n− N

1−λ√
Nλ

(1−λ)3

} =

=

Φ

{
n− N

1−λ√
Nλ

(1−λ)3
− kr√

Nλ
(1−λ)3

+ k√
Nλ
1−λ

}
+ o(1)

Φ

{
n− N

1−λ√
Nλ

(1−λ)3

}
+ o(1)

= 1 + o(1).

Let C1 <
n− N

1−λ√
Nλ

(1−λ)3
. By Lemma 1 we have

1− ε+ o(1) <

P

√N−k
N

ζN−k−N−k
1−λ√

(N−k)λ
(1−λ)3

≤ n− N
1−λ√
Nλ

(1−λ)3
− kr√

Nλ
(1−λ)3

+ k√
Nλ
1−λ


P

{
ζN− N

1−λ√
Nλ

(1−λ)3
≤ n− N

1−λ√
Nλ

(1−λ)3

} <
1

1− ε+ o(1)
.
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Therefore we obtain

P

√N−k
N

ζN−k−N−k
1−λ√

(N−k)λ
(1−λ)3

≤ n− N
1−λ√
Nλ

(1−λ)3
− kr√

Nλ
(1−λ)3

+ k√
Nλ
1−λ


P

{
ζN− N

1−λ√
Nλ

(1−λ)3
≤ n− N

1−λ√
Nλ

(1−λ)3

} = 1 + o(1), (2.3)

as C <
n− N

1−λ√
Nλ

(1−λ)3
. Using (2.3) in (2.2) we obtain (1.1). So we can applicate Theorem A.

Let (B) be valid. Using (2.1) we have

KkP(A1 ∩ A2 ∩ · · · ∩ Ak) = (Kpr(λ))k
P
{

ζN−k
(N−k)2 ≤

n−kr
(N−k)2

}
P
{
ζN
N2 ≤ n

N2

} . (2.4)

Let 0 < ε < 1/2. Choose C2 > 0 such that P{δ > C1} < 1− ε. Since

kr

N2
→ 0,

k

N
→ 0,

as C ≤ n
N2 ≤ C2, by Lemma 3 we have

P
{

ζN−k
(N−k)2 ≤

n−kr
(N−k)2

}
P
{
ζN
N2 ≤ n

N2

} =
P
{
δ ≤ n−kr

(N−k)2

}
+ o(1)

P
{
δ ≤ n

N2

}
+ o(1)

= 1 + o(1).

For C2 <
n
N2 by Lemma 3 we have

1− ε+ o(1) <
P
{

ζN−k
(N−k)2 ≤

n−kr
(N−k)2

}
P
{
ζN
N2 ≤ n

N2

} <
1

1− ε+ o(1)
.

Therefore we obtain
P
{

ζN−k
(N−k)2 ≤

n−kr
(N−k)2

}
P
{
ζN
N2 ≤ n

N2

} = 1 + o(1), (2.5)

as C ≤ n
N2 . Using (2.5) in (2.4), we obtain (1.1). So we can applicate Theorem A. �
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