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1 Introduction

Direct continuous observations are known to destroy quantum evolutions (so-called quan-
tum Zeno paradox), so that continuous quantum measurements have to be indirect, and
the results of the observation are assessed via quantum filtering. Initially developed in the
framework of quantum stochastic calculus by Belavkin in the 80s of the last century in [4],
[5], the main equations of quantum stochastic filtering, often referred to as the Belavkin
equations, were later on derived via more elementary approach, as the limit of standard
discrete measurements under appropriate scaling, see e.g. [6], [17]. The scaling arises
from the basic Markovian assumption that the times between measurement are either
fixed or exponentially distributed, like in a standard random walk. Since such Markovian
assumption has no a priori justification, in many branches of modern physics it became
popular to extend random walk modeling to the continuous time random walk (CTRW)
modeling, where the time between discrete events is taken to be non-exponential, usually
from the domain of attraction of a stable law. In the present paper we apply the CTRW
modeling to the continuous quantum measurements yielding the new fractional in time
evolution equations of quantum filtering in the scaling limit. The related quantum control
problems turn out to be described by the fractional Hamilton-Jacobi-Bellman (HJB) equa-
tions on Riemannian manifolds (complex projective spaces in the case of finite-dimensional
quantum mechanics) or the fractional Isaacs equation in the case of competitive control.
By-passing we provide a full derivation of the standard quantum filtering equations (ex-
plaining from scratch all underlying quantum mechanical rules used) in a slightly modified
and simplified way yielding also new explicit rates of convergence (which are not available
via the tightness of martingales approach developed previously) and tailored in a way
that allows for the direct applications of the basic results of CTRWs to deduce the final
fractional filtering equations.

Several general comments on a wider context are in order.
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(i) The fractional equations of quantum stochastic filtering derived here can be con-
sidered as an alternative formulation of fractional quantum mechanics, which is different
from the framework of fractional Schrödinger equations suggested in [15] and extensively
studied recently. This leads also to a different class of quantum control problems, as those
related to fractional Schrödinger formulation.

(ii) The fractional versions of the classical stochastic filtering (see [1] for the basics)
has been actively studied recently, see e.g. [20].

(iii) The quantum mean-field games as developed by the author in [11] can now be
extended to the theory of fractional quantum mean-field games. The classical versions of
fractional mean-field games just started to appear in the literature, see [7]. On the other
hand, the application of classical stochastic filtering in the study of mean-field games has
also started to appear, see [18].

(iv) Fractional modeling and CTRW become very popular in almost all domains of
physics, as well as economics and finances, see e.g. [2], [19] for some representative
references.

2 The starting point: Markov chains of sequential

indirect observations

Here we describe the Markov chains of sequential indirect observations (rather standard
by now, in discrete and continuous time recalling first quickly the main notions related
to quantum measurements.

Physical observables are given by self-adjoint operators A in H. If A has a discrete
spectrum (which is always the case in finite-dimensional H, that we shall mostly work
with), then A has the spectral decomposition A =

∑
j λjPj, where Pj are orthogonal

projections on the eigenspaces of A corresponding to the eigenvalues λj. According to
the basic postulate of quantum measurement , measuring observable A in a state γ (often
referred to as the Stern-Gerlach experiment) can yield each of the eigenvalue λj with the
probability

tr (γPj) = tr (PjγPj), (1)

and, if the value λj was obtained, the state of the system changes (instantaneously) to
the reduced state

PjγPj/tr (γPj).

In particular, if the state ρ was pure, γ = |ψ⟩⟨ψ|, then the probability to get λj as the
result of the measurement becomes (ψ,Pjψ) and the reduced state also remains pure and
is given by the vector Pjψ. If the interaction with the apparatus was preformed ’without
reading the results’, the state ρ is said to be subject to a non-selective measurement that
changes γ to the state

∑
j PjρPj.

Indirect measurements of a chosen quantum system in the initial space H0, which we
shall often referred to as an atom, are organised in the following way. One couples the
atom with another quantum system, a measuring devise, specified by another Hilbert
space H. Namely the combined system lives in the tensor product Hilbert space H0 ×H
and its evolution is given by certain self-adjoint operator H in H0 ×H. In the measuring
device some fixed vector φ ∈ H is chosen, called the vacuum and interpreted as the
stationary state of the devise when no interaction is involved. The corresponding density
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matrix will be denoted Ω = |φ⟩⟨φ|. Indirect measurements of the states of the atom are
performed by measuring the coupled system via an observable of the second system and
then projecting the resulting state to the atom via the partial trace.

Namely it is described by an operator R in H with the spectral decomposition R =∑
j λjPj and is performed in two steps: given a state γ in H0 ×H one performs a mea-

surement of R lifted as I ⊗R to H0 ×H yielding values λj and new states

(I ⊗ Pj)γ(I ⊗ Pj)/tr (γ(I ⊗ Pj))

with probabilities pj = tr (γ(I ⊗ Pj)), and then one projects these states to H0 via the
partial trace producing the states

trp1[(I ⊗ Pj)γ(I ⊗ Pj)/tr (γ(I ⊗ Pj))]. (2)

The discrete time Markov chain of successive indirect observations (or measurements)
evolves according to the following procedure specified by a triple: a self-adjoint operator
H in H0 ×H, a self-adjoint operator R in H and the vacuum vector Ω in H. (i) Starting
with an initial state ρ of H0 one couples it with the device in its vacuum state Ω producing
the state γ = ρ⊗Ω in H0×H, (ii) During a fixed period of time t one evolves the system
according to the operator H producing the state γt = e−itHγeitH in H0 × H, (iii) One
performs the indirect measurement with the state γt yielding the states

ρjt = trp1
(I ⊗ Pj)γt(I ⊗ Pj)

pj(t)
= trp1

(I ⊗ Pj)e
−itH(ρ⊗ Ω)eitH(I ⊗ Pj)

pj(t)
(3)

with the probabilities

pj(t) = tr (γt(I ⊗ Pj)) = tr (e−itH(ρ⊗ Ω)eitH(I ⊗ Pj)). (4)

Then the same repeats starting with ρt as the initial state. Let us denote Ut the
transition operator of this Markov chain that acts on the set of continuous functions on
S(H) as

Utf(ρ) = Ef(ρt) =
∑
j

pj(t)f(ρ
j
t). (5)

Similarly one can define the continuous time Markov chain of successive indirect observa-
tions (or measurements) Oρ

t,λ and the corresponding Markov semigroup T λ
t on C(H(S))

evolving according to the same rules, with only difference that the times t between suc-
cessive measurements are not fixed, but represent exponential random variables τ with
some fixed intensity λ: P(τ > t) = e−λt. The generator Lλ of this Markov process is
bounded in C(S(H)) and acts as

Lλf(ρ) =
(Uλf − f)(ρ)

λ
=

1

λ

∑
j

pj(λ)(f(ρ
j
λ)− f(ρ)). (6)

All ”quantum content” of the theory is now captured in the explicit formula (3). What
follows will be the pure classical probability analysis of these Markov chains, their scaling
limits and control.
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3 The results

We show that for the case of the so-called counting type observation, the generator of the
limiting process of filtered states (quantum filtering process) is

Lcountf(ρ) = −(f ′(ρ), i[A, ρ] +
1

2
{C∗C, ρ} − ρT ) + T

[
f(
CρC∗

T
)− f(ρ)

]
. (7)

We show that for the case of the diffusive (homodyne) type observation, the generator
of the limiting process limiting process of filtered states (quantum filtering process) is

Ldiff(ρ) =
1

2
[(ρC∗+Cρ−Ωρ)f ′′(ρ)(ρC∗+Cρ−Ωρ)]+(f ′(ρ),−i[A, ρ]−1

2
{C∗C, ρ}+CρC∗).

(8)
The rates of convergence from the discrete measurement scheme are obtained.
If observation goes through different channel the generator becomes Lmix, which is the

sum of terms related to counting and diffusion observation.
If times between discrete quantum measurements are not exponential and are modeled

as CTRW, the limiting process becomes governed by the fractional equation

D
(ν)
0+⋆ft(x) = Lmixft(x), f0(x) = f(x), (9)

with Dν is the generalized fractional derivative (for instance, the standard Caputo deriva-
tive of an order β).

4 Fractional quantum control and games

From the theory above one can naturally initiate the theory of quantum fractional dynamic
control and games.
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